Решение неравенств. Доступно о том, как решать неравенства

Сегодня, друзья, не будет никаких соплей и сантиментов. Вместо них я без лишних вопросов отправлю вас в бой с одним из самых грозных противников в курсе алгебры 8—9 класса.

Да, вы всё правильно поняли: речь идёт о неравенствах с модулем. Мы рассмотрим четыре основных приёма, с помощью которых вы научитесь решать порядка 90% таких задач. А что с остальными 10%? Что ж, о них мы поговорим в отдельном уроке.:)

Однако перед тем, как разбирать какие-то там приёмы, хотелось бы напомнить два факта, которые уже необходимо знать. Иначе вы рискуете вообще не понять материал сегодняшнего урока.

Что уже нужно знать

Капитан Очевидность как бы намекает, что для решения неравенств с модулем необходимо знать две вещи:

  1. Как решаются неравенства;
  2. Что такое модуль.

Начнём со второго пункта.

Определение модуля

Тут всё просто. Есть два определения: алгебраическое и графическое. Для начала — алгебраическое:

Определение. Модуль числа $x$ — это либо само это число, если оно неотрицательно, либо число, ему противоположное, если исходный $x$ — всё-таки отрицателен.

Записывается это так:

\[\left| x \right|=\left\{ \begin{align} & x,\ x\ge 0, \\ & -x,\ x \lt 0. \\\end{align} \right.\]

Говоря простым языком, модуль — это «число без минуса». И именно в этой двойственности (где-то с исходным числом ничего не надо делать, а где-то придётся убрать какой-то там минус) и заключается вся сложность для начинающих учеников.

Есть ещё геометрическое определение. Его тоже полезно знать, но обращаться к нему мы будем лишь в сложных и каких-то специальных случаях, где геометрический подход удобнее алгебраического (спойлер: не сегодня).

Определение. Пусть на числовой прямой отмечена точка $a$. Тогда модулем $\left| x-a \right|$ называется расстояние от точки $x$ до точки $a$ на этой прямой.

Если начертить картинку, то получится что-то типа этого:


Графическое определение модуля

Так или иначе, из определения модуля сразу следует его ключевое свойство: модуль числа всегда является величиной неотрицательной . Этот факт будет красной нитью идти через всё наше сегодняшнее повествование.

Решение неравенств. Метод интервалов

Теперь разберёмся с неравенствами. Их существует великое множество, но наша задача сейчас — уметь решать хотя бы самые простые из них. Те, которые сводятся к линейным неравенствам, а также к методу интервалов.

На эту тему у меня есть два больших урока (между прочем, очень, ОЧЕНЬ полезных — рекомендую изучить):

  1. Метод интервалов для неравенств (особенно посмотрите видео);
  2. Дробно-рациональные неравенства — весьма объёмный урок, но после него у вас вообще не останется каких-либо вопросов.

Если вы всё это знаете, если фраза «перейдём от неравенства к уравнению» не вызывает у вас смутное желание убиться об стену, то вы готовы: добро пожаловать в ад к основной теме урока.:)

1. Неравенства вида «Модуль меньше функции»

Это одна из самых часто встречающихся задач с модулями. Требуется решить неравенство вида:

\[\left| f \right| \lt g\]

В роли функций $f$ и $g$ может выступать что угодно, но обычно это многочлены. Примеры таких неравенств:

\[\begin{align} & \left| 2x+3 \right| \lt x+7; \\ & \left| {{x}^{2}}+2x-3 \right|+3\left(x+1 \right) \lt 0; \\ & \left| {{x}^{2}}-2\left| x \right|-3 \right| \lt 2. \\\end{align}\]

Все они решаются буквально в одну строчку по схеме:

\[\left| f \right| \lt g\Rightarrow -g \lt f \lt g\quad \left(\Rightarrow \left\{ \begin{align} & f \lt g, \\ & f \gt -g \\\end{align} \right. \right)\]

Нетрудно заметить, что избавляемся от модуля, но взамен получаем двойное неравенство (или, что тоже самое, систему из двух неравенств). Зато этот переход учитывает абсолютно все возможные проблемы: если число под модулем положительно, метод работает; если отрицательно — всё равно работает; и даже при самой неадекватной функции на месте $f$ или $g$ метод всё равно сработает.

Естественно, возникает вопрос: а проще нельзя? К сожалению, нельзя. В этом вся фишка модуля.

Впрочем, хватит философствовать. Давайте решим парочку задач:

Задача. Решите неравенство:

\[\left| 2x+3 \right| \lt x+7\]

Решение. Итак, перед нами классическое неравенство вида «модуль меньше» — даже преобразовывать нечего. Работаем по алгоритму:

\[\begin{align} & \left| f \right| \lt g\Rightarrow -g \lt f \lt g; \\ & \left| 2x+3 \right| \lt x+7\Rightarrow -\left(x+7 \right) \lt 2x+3 \lt x+7 \\\end{align}\]

Не торопитесь раскрывать скобки, перед которыми стоит «минус»: вполне возможно, что из-за спешки вы допустите обидную ошибку.

\[-x-7 \lt 2x+3 \lt x+7\]

\[\left\{ \begin{align} & -x-7 \lt 2x+3 \\ & 2x+3 \lt x+7 \\ \end{align} \right.\]

\[\left\{ \begin{align} & -3x \lt 10 \\ & x \lt 4 \\ \end{align} \right.\]

\[\left\{ \begin{align} & x \gt -\frac{10}{3} \\ & x \lt 4 \\ \end{align} \right.\]

Задача свелась к двум элементарным неравенствам. Отметим их решения на параллельных числовых прямых:

Пересечение множеств

Пересечением этих множеств и будет ответ.

Ответ: $x\in \left(-\frac{10}{3};4 \right)$

Задача. Решите неравенство:

\[\left| {{x}^{2}}+2x-3 \right|+3\left(x+1 \right) \lt 0\]

Решение. Это задание уже чуть посложнее. Для начала уединим модуль, перенеся второе слагаемое вправо:

\[\left| {{x}^{2}}+2x-3 \right| \lt -3\left(x+1 \right)\]

Очевидно, перед нами вновь неравенство вида «модуль меньше», поэтому избавляемся от модуля по уже известному алгоритму:

\[-\left(-3\left(x+1 \right) \right) \lt {{x}^{2}}+2x-3 \lt -3\left(x+1 \right)\]

Вот сейчас внимание: кто-то скажет, что я немного извращенец со всеми этими скобками. Но ещё раз напомню, что наша ключевая цель — грамотно решить неравенство и получить ответ . Позже, когда вы в совершенстве освоите всё, о чём рассказано в этом уроке, можете сами извращаться как хотите: раскрывать скобки, вносить минусы и т.д.

А мы для начала просто избавимся от двойного минуса слева:

\[-\left(-3\left(x+1 \right) \right)=\left(-1 \right)\cdot \left(-3 \right)\cdot \left(x+1 \right)=3\left(x+1 \right)\]

Теперь раскроем все скобки в двойном неравенстве:

Переходим к двойному неравенству. В этот раз выкладки будут посерьёзнее:

\[\left\{ \begin{align} & {{x}^{2}}+2x-3 \lt -3x-3 \\ & 3x+3 \lt {{x}^{2}}+2x-3 \\ \end{align} \right.\]

\[\left\{ \begin{align} & {{x}^{2}}+5x \lt 0 \\ & {{x}^{2}}-x-6 \gt 0 \\ \end{align} \right.\]

Оба неравенства являются квадратными и решаются методом интервалов (потому и говорю: если не знаете, что это такое, лучше пока не браться за модули). Переходим к уравнению в первом неравенстве:

\[\begin{align} & {{x}^{2}}+5x=0; \\ & x\left(x+5 \right)=0; \\ & {{x}_{1}}=0;{{x}_{2}}=-5. \\\end{align}\]

Как видим, на выходе получилось неполное квадратное уравнение, которое решается элементарно. Теперь разберёмся со вторым неравенством системы. Там придётся применить теорему Виета:

\[\begin{align} & {{x}^{2}}-x-6=0; \\ & \left(x-3 \right)\left(x+2 \right)=0; \\& {{x}_{1}}=3;{{x}_{2}}=-2. \\\end{align}\]

Отмечаем полученные числа на двух параллельных прямых (отдельная для первого неравенства и отдельная для второго):

Опять же, поскольку мы решаем систему неравенств, нас интересует пересечение заштрихованных множеств: $x\in \left(-5;-2 \right)$. Это и есть ответ.

Ответ: $x\in \left(-5;-2 \right)$

Думаю, после этих примеров схема решения предельно ясна:

  1. Уединить модуль, перенеся все другие слагаемые в противоположную часть неравенства. Таким образом мы получим неравенство вида $\left| f \right| \lt g$.
  2. Решить это неравенство, избавившись от модуля по описанной выше схеме. В какой-то момент потребуется перейти от двойного неравенства к системе из двух самостоятельных выражений, каждое из которых уже можно решать отдельно.
  3. Наконец, останется лишь пересечь решения этих двух самостоятельных выражений — и всё, мы получим окончательный ответ.

Аналогичный алгоритм существует и для неравенств следующего типа, когда модуль больше функции. Однако там есть парочка серьёзных «но». Об этих «но» мы сейчас и поговорим.

2. Неравенства вида «Модуль больше функции»

Выглядят они так:

\[\left| f \right| \gt g\]

Похоже на предыдущее? Похоже. И тем не менее решаются такие задачи совсем по-другому. Формально схема следующая:

\[\left| f \right| \gt g\Rightarrow \left[ \begin{align} & f \gt g, \\ & f \lt -g \\\end{align} \right.\]

Другими словами, мы рассматриваем два случая:

  1. Сначала просто игнорируем модуль — решаем обычное неравенство;
  2. Затем по сути раскрываем модуль со знаком «минус», а затем умножаем обе части неравенства на −1, меня при этом знак.

При этом варианты объединены квадратной скобкой, т.е. перед нами совокупность двух требований.

Обратите внимание ещё раз: перед нами не система, а совокупность, поэтому в ответе множества объединяются, а не пересекаются . Это принципиальное отличие от предыдущего пункта!

Вообще, с объединениями и пересечениями у многих учеников сплошная путаница, поэтому давайте разберёмся в этом вопросе раз и навсегда:

  • «∪» — это знак объединения. По сути, это стилизованная буква «U», которая пришла к нам из английского языка и является аббревиатурой от «Union», т.е. «Объединения».
  • «∩» — это знак пересечения. Эта хрень ниоткуда не пришла, а просто возникла как противопоставление к «∪».

Чтобы ещё проще было запомнить, просто пририсуйте к этим знакам ножки, чтобы получились бокалы (вот только не надо сейчас обвинять меня в пропаганде наркомании и алкоголизма: если вы всерьёз изучаете этот урок, то вы уже наркоман):

Разница между пересечением и объединением множеств

В переводе на русский это означает следующее: объединение (совокупность) включает в себя элементы из обоих множеств, поэтому никак не меньше каждого из них; а вот пересечение (система) включает в себя лишь те элементы, которые одновременно находятся и в первом множестве, и во втором. Поэтому пересечение множеств никогда не бывает больше множеств-исходников.

Так стало понятнее? Вот и отлично. Переходим к практике.

Задача. Решите неравенство:

\[\left| 3x+1 \right| \gt 5-4x\]

Решение. Действуем по схеме:

\[\left| 3x+1 \right| \gt 5-4x\Rightarrow \left[ \begin{align} & 3x+1 \gt 5-4x \\ & 3x+1 \lt -\left(5-4x \right) \\\end{align} \right.\]

Решаем каждое неравенство совокупности:

\[\left[ \begin{align} & 3x+4x \gt 5-1 \\ & 3x-4x \lt -5-1 \\ \end{align} \right.\]

\[\left[ \begin{align} & 7x \gt 4 \\ & -x \lt -6 \\ \end{align} \right.\]

\[\left[ \begin{align} & x \gt 4/7\ \\ & x \gt 6 \\ \end{align} \right.\]

Отмечаем каждое полученное множество на числовой прямой, а затем объединяем их:

Объединение множеств

Совершенно очевидно, что ответом будет $x\in \left(\frac{4}{7};+\infty \right)$

Ответ: $x\in \left(\frac{4}{7};+\infty \right)$

Задача. Решите неравенство:

\[\left| {{x}^{2}}+2x-3 \right| \gt x\]

Решение. Ну что? Да ничего — всё то же самое. Переходим от неравенства с модулем к совокупности двух неравенств:

\[\left| {{x}^{2}}+2x-3 \right| \gt x\Rightarrow \left[ \begin{align} & {{x}^{2}}+2x-3 \gt x \\ & {{x}^{2}}+2x-3 \lt -x \\\end{align} \right.\]

Решаем каждое неравенство. К сожалению, корни там будут не оч:

\[\begin{align} & {{x}^{2}}+2x-3 \gt x; \\ & {{x}^{2}}+x-3 \gt 0; \\ & D=1+12=13; \\ & x=\frac{-1\pm \sqrt{13}}{2}. \\\end{align}\]

Во втором неравенстве тоже немного дичи:

\[\begin{align} & {{x}^{2}}+2x-3 \lt -x; \\ & {{x}^{2}}+3x-3 \lt 0; \\ & D=9+12=21; \\ & x=\frac{-3\pm \sqrt{21}}{2}. \\\end{align}\]

Теперь нужно отметить эти числа на двух осях — по одной оси для каждого неравенства. Однако отмечать точки нужно в правильном порядке: чем больше число, тем дальше сдвигам точку вправо.

И вот тут нас ждёт подстава. Если с числами $\frac{-3-\sqrt{21}}{2} \lt \frac{-1-\sqrt{13}}{2}$ всё ясно (слагаемые в числителе первой дроби меньше слагаемых в числителе второй, поэтому сумма тоже меньше), с числами $\frac{-3-\sqrt{13}}{2} \lt \frac{-1+\sqrt{21}}{2}$ тоже не возникнет затруднений (положительное число заведомо больше отрицательного), то вот с последней парочкой всё не так однозначно. Что больше: $\frac{-3+\sqrt{21}}{2}$ или $\frac{-1+\sqrt{13}}{2}$? От ответа на этот вопрос будет зависеть расстановка точек на числовых прямых и, собственно, ответ.

Поэтому давайте сравнивать:

\[\begin{matrix} \frac{-1+\sqrt{13}}{2}\vee \frac{-3+\sqrt{21}}{2} \\ -1+\sqrt{13}\vee -3+\sqrt{21} \\ 2+\sqrt{13}\vee \sqrt{21} \\\end{matrix}\]

Мы уединили корень, получили неотрицательные числа с обеих сторон неравенства, поэтому вправе возвести обе стороны в квадрат:

\[\begin{matrix} {{\left(2+\sqrt{13} \right)}^{2}}\vee {{\left(\sqrt{21} \right)}^{2}} \\ 4+4\sqrt{13}+13\vee 21 \\ 4\sqrt{13}\vee 3 \\\end{matrix}\]

Думаю, тут и ежу понятно, что $4\sqrt{13} \gt 3$, поэтому $\frac{-1+\sqrt{13}}{2} \gt \frac{-3+\sqrt{21}}{2}$, окончательно точки на осях будут расставлены вот так:

Случай некрасивых корней

Напомню, мы решаем совокупность, поэтому в ответ пойдёт объединение, а не пересечение заштрихованных множеств.

Ответ: $x\in \left(-\infty ;\frac{-3+\sqrt{21}}{2} \right)\bigcup \left(\frac{-1+\sqrt{13}}{2};+\infty \right)$

Как видите, наша схема прекрасно работает как для простых задач, так и для весьма жёстких. Единственное «слабое место» в таком подходе — нужно грамотно сравнивать иррациональные числа (и поверьте: это не только корни). Но вопросам сравнения будет посвящён отдельный (и очень серьёзный урок). А мы идём дальше.

3. Неравенства с неотрицательными «хвостами»

Вот мы и добрались до самого интересного. Это неравенства вида:

\[\left| f \right| \gt \left| g \right|\]

Вообще говоря, алгоритм, о котором мы сейчас поговорим, верен н только для модуля. Он работает во всех неравенствах, где слева и справа стоят гарантированно неотрицательные выражения:

Что делать с этими задачами? Просто помните:

В неравенствах с неотрицательными «хвостами» можно возводить обе части в любую натуральную степень. Никаких дополнительных ограничений при этом не возникнет.

Прежде всего нас будет интересовать возведение в квадрат — он сжигает модули и корни:

\[\begin{align} & {{\left(\left| f \right| \right)}^{2}}={{f}^{2}}; \\ & {{\left(\sqrt{f} \right)}^{2}}=f. \\\end{align}\]

Вот только не надо путать это с извлечением корня из квадрата:

\[\sqrt{{{f}^{2}}}=\left| f \right|\ne f\]

Бесчисленное множество ошибок было допущено в тот момент, когда ученик забывал ставить модуль! Но это совсем другая история (это как бы иррациональные уравнения), поэтому не будем сейчас в это углубляться. Давайте лучше решим парочку задач:

Задача. Решите неравенство:

\[\left| x+2 \right|\ge \left| 1-2x \right|\]

Решение. Сразу заметим две вещи:

  1. Это нестрогое неравенство. Точки на числовой прямой будут выколоты.
  2. Обе стороны неравенства заведомо неотрицательны (это свойство модуля: $\left| f\left(x \right) \right|\ge 0$).

Следовательно, можем возвести обе части неравенства в квадрат, чтобы избавиться от модуля и решать задачу обычным методом интервалов:

\[\begin{align} & {{\left(\left| x+2 \right| \right)}^{2}}\ge {{\left(\left| 1-2x \right| \right)}^{2}}; \\ & {{\left(x+2 \right)}^{2}}\ge {{\left(2x-1 \right)}^{2}}. \\\end{align}\]

На последнем шаге я слегка схитрил: поменял последовательность слагаемых, воспользовавшись чётностью модуля (по сути, умножил выражение $1-2x$ на −1).

\[\begin{align} & {{\left(2x-1 \right)}^{2}}-{{\left(x+2 \right)}^{2}}\le 0; \\ & \left(\left(2x-1 \right)-\left(x+2 \right) \right)\cdot \left(\left(2x-1 \right)+\left(x+2 \right) \right)\le 0; \\ & \left(2x-1-x-2 \right)\cdot \left(2x-1+x+2 \right)\le 0; \\ & \left(x-3 \right)\cdot \left(3x+1 \right)\le 0. \\\end{align}\]

Решаем методом интервалов. Переходим от неравенства к уравнению:

\[\begin{align} & \left(x-3 \right)\left(3x+1 \right)=0; \\ & {{x}_{1}}=3;{{x}_{2}}=-\frac{1}{3}. \\\end{align}\]

Отмечаем найденные корни на числовой прямой. Ещё раз: все точки закрашены, поскольку исходное неравенство — нестрогое!

Избавление от знака модуля

Напомню для особо упоротых: знаки мы берём из последнего неравенства, которое было записано перед переходом к уравнению. И закрашиваем области, требуемые в том же неравенстве. В нашем случае это $\left(x-3 \right)\left(3x+1 \right)\le 0$.

Ну вот и всё. Задача решена.

Ответ: $x\in \left[ -\frac{1}{3};3 \right]$.

Задача. Решите неравенство:

\[\left| {{x}^{2}}+x+1 \right|\le \left| {{x}^{2}}+3x+4 \right|\]

Решение. Делаем всё то же самое. Я не буду комментировать — просто посмотрите на последовательность действий.

Возводим в квадрат:

\[\begin{align} & {{\left(\left| {{x}^{2}}+x+1 \right| \right)}^{2}}\le {{\left(\left| {{x}^{2}}+3x+4 \right| \right)}^{2}}; \\ & {{\left({{x}^{2}}+x+1 \right)}^{2}}\le {{\left({{x}^{2}}+3x+4 \right)}^{2}}; \\ & {{\left({{x}^{2}}+x+1 \right)}^{2}}-{{\left({{x}^{2}}+3x+4 \right)}^{2}}\le 0; \\ & \left({{x}^{2}}+x+1-{{x}^{2}}-3x-4 \right)\times \\ & \times \left({{x}^{2}}+x+1+{{x}^{2}}+3x+4 \right)\le 0; \\ & \left(-2x-3 \right)\left(2{{x}^{2}}+4x+5 \right)\le 0. \\\end{align}\]

Метод интервалов:

\[\begin{align} & \left(-2x-3 \right)\left(2{{x}^{2}}+4x+5 \right)=0 \\ & -2x-3=0\Rightarrow x=-1,5; \\ & 2{{x}^{2}}+4x+5=0\Rightarrow D=16-40 \lt 0\Rightarrow \varnothing . \\\end{align}\]

Всего один корень на числовой прямой:

Ответ — целый интервал

Ответ: $x\in \left[ -1,5;+\infty \right)$.

Небольшое замечание насчёт последней задачи. Как точно подметил один мой ученик, оба подмодульных выражения в данном неравенстве заведомо положительны, поэтому знак модуля можно без ущерба для здоровья опустить.

Но это уже совсем другой уровень размышлений и другой подход — его условно можно назвать методом следствий. О нём — в отдельном уроке. А сейчас перейдём к финальной части сегодняшнего урока и рассмотрим универсальный алгоритм, который работает всегда. Даже тогда, когда все предыдущие подходы оказались бессильны.:)

4. Метод перебора вариантов

А что, если все эти приёмы не помогут? Если неравенство не сводится неотрицательным хвостам, если уединить модуль не получается, если вообще боль-печаль-тоска?

Тогда на сцену выходит «тяжёлая артиллерия» всей математики — метод перебора. Применительно к неравенствам с модулем выглядит он так:

  1. Выписать все подмодульные выражения и приравнять их к нулю;
  2. Решить полученные уравнения и отметить найденные корни на одной числовой прямой;
  3. Прямая разобьётся на несколько участков, внутри которого каждый модуль имеет фиксированный знак и потому однозначно раскрывается;
  4. Решить неравенство на каждом таком участке (можно отдельно рассмотреть корни-границы, полученные в пункте 2 — для надёжности). Результаты объединить — это и будет ответ.:)

Ну как? Слабо? Легко! Только долго. Посмотрим на практике:

Задача. Решите неравенство:

\[\left| x+2 \right| \lt \left| x-1 \right|+x-\frac{3}{2}\]

Решение. Эта хрень не сводится к неравенствам вида $\left| f \right| \lt g$, $\left| f \right| \gt g$ или $\left| f \right| \lt \left| g \right|$, поэтому действуем напролом.

Выписываем подмодульные выражения, приравниваем их к нулю и находим корни:

\[\begin{align} & x+2=0\Rightarrow x=-2; \\ & x-1=0\Rightarrow x=1. \\\end{align}\]

Итого у нас два корня, которые разбивают числовую прямую на три участка, внутри которых каждый модуль раскрывается однозначно:

Разбиение числовой прямой нулями подмодульных функций

Рассмотрим каждый участок отдельно.

1. Пусть $x \lt -2$. Тогда оба подмодульных выражения отрицательны, и исходное неравенство перепишется так:

\[\begin{align} & -\left(x+2 \right) \lt -\left(x-1 \right)+x-1,5 \\ & -x-2 \lt -x+1+x-1,5 \\ & x \gt 1,5 \\\end{align}\]

Получили довольно простое ограничение. Пересечём его с исходным предположением, что $x \lt -2$:

\[\left\{ \begin{align} & x \lt -2 \\ & x \gt 1,5 \\\end{align} \right.\Rightarrow x\in \varnothing \]

Очевидно, что переменная $x$ не может одновременно быть меньше −2, но больше 1,5. Решений на этом участке нет.

1.1. Отдельно рассмотрим пограничный случай: $x=-2$. Просто подставим это число в исходное неравенство и проверим: выполняется ли оно?

\[\begin{align} & {{\left. \left| x+2 \right| \lt \left| x-1 \right|+x-1,5 \right|}_{x=-2}} \\ & 0 \lt \left| -3 \right|-2-1,5; \\ & 0 \lt 3-3,5; \\ & 0 \lt -0,5\Rightarrow \varnothing . \\\end{align}\]

Очевидно, что цепочка вычислений привела нас к неверному неравенству. Следовательно, исходное неравенство тоже неверно, и $x=-2$ не входит в ответ.

2. Пусть теперь $-2 \lt x \lt 1$. Левый модуль уже раскроется с «плюсом», но правый — всё ещё с «минусом». Имеем:

\[\begin{align} & x+2 \lt -\left(x-1 \right)+x-1,5 \\ & x+2 \lt -x+1+x-1,5 \\& x \lt -2,5 \\\end{align}\]

Снова пересекаем с исходным требованием:

\[\left\{ \begin{align} & x \lt -2,5 \\ & -2 \lt x \lt 1 \\\end{align} \right.\Rightarrow x\in \varnothing \]

И снова пустое множество решений, поскольку нет таких чисел, которые одновременно меньше −2,5, но больше −2.

2.1. И вновь частный случай: $x=1$. Подставляем в исходное неравенство:

\[\begin{align} & {{\left. \left| x+2 \right| \lt \left| x-1 \right|+x-1,5 \right|}_{x=1}} \\ & \left| 3 \right| \lt \left| 0 \right|+1-1,5; \\ & 3 \lt -0,5; \\ & 3 \lt -0,5\Rightarrow \varnothing . \\\end{align}\]

Аналогично предыдущему «частному случаю», число $x=1$ явно не входит в ответ.

3. Последний кусок прямой: $x \gt 1$. Тут все модули раскрываются со знаком «плюс»:

\[\begin{align} & x+2 \lt x-1+x-1,5 \\ & x+2 \lt x-1+x-1,5 \\ & x \gt 4,5 \\\end{align}\]

И вновь пересекаем найденное множество с исходным ограничением:

\[\left\{ \begin{align} & x \gt 4,5 \\ & x \gt 1 \\\end{align} \right.\Rightarrow x\in \left(4,5;+\infty \right)\]

Ну наконец-то! Мы нашли интервал, который и будет ответом.

Ответ: $x\in \left(4,5;+\infty \right)$

Напоследок — одно замечание, которое, возможно, убережёт вас от глупых ошибок при решении реальных задач:

Решения неравенств с модулями обычно представляют собой сплошные множества на числовой прямой — интервалы и отрезки. Гораздо реже встречаются изолированные точки. И ещё реже случается так, что границ решения (конец отрезка) совпадает с границей рассматриваемого диапазона.

Следовательно, если границы (те самые «частные случаи») не входят в ответ, то почти наверняка не войдут в ответ и области слева-справа от этих границ. И напротив: граница вошла в ответ — значит, и какие-то области вокруг неё тоже будут ответами.

Помните об этом, когда проверяете свои решения.

А сегодня рациональные неравенства не все могут решать. Точнее, решать могут не только лишь все. Мало кто может это делать.
Кличко

Этот урок будет жёстким. Настолько жёстким, что до конца его дойдут лишь Избранные. Поэтому перед началом чтения рекомендую убрать от экранов женщин, кошек, беременных детей и...

Да ладно, на самом деле всё просто. Допустим, вы освоили метод интервалов (если не освоили — рекомендую вернуться и прочитать) и научились решать неравенства вида $P\left(x \right) \gt 0$, где $P\left(x \right)$ — какой-нибудь многочлен или произведение многочленов.

Полагаю, что для вас не составит труда решить, например, вот такую дичь (кстати, попробуйте для разминки):

\[\begin{align} & \left(2{{x}^{2}}+3x+4 \right)\left(4x+25 \right) \gt 0; \\ & x\left(2{{x}^{2}}-3x-20 \right)\left(x-1 \right)\ge 0; \\ & \left(8x-{{x}^{4}} \right){{\left(x-5 \right)}^{6}}\le 0. \\ \end{align}\]

Теперь немного усложним задачу и рассмотрим не просто многочлены, а так называемые рациональные дроби вида:

где $P\left(x \right)$ и $Q\left(x \right)$ — всё те же многочлены вида ${{a}_{n}}{{x}^{n}}+{{a}_{n-1}}{{x}^{n-1}}+...+{{a}_{0}}$, либо произведение таких многочленов.

Это и будет рациональное неравенство. Принципиальным моментом является наличие переменной $x$ в знаменателе. Например, вот это — рациональные неравенства:

\[\begin{align} & \frac{x-3}{x+7} \lt 0; \\ & \frac{\left(7x+1 \right)\left(11x+2 \right)}{13x-4}\ge 0; \\ & \frac{3{{x}^{2}}+10x+3}{{{\left(3-x \right)}^{2}}\left(4-{{x}^{2}} \right)}\ge 0. \\ \end{align}\]

А это — не рациональное, а самое обычное неравенство, которое решается методом интервалов:

\[\frac{{{x}^{2}}+6x+9}{5}\ge 0\]

Забегая вперёд, сразу скажу: существует как минимум два способа решения рациональных неравенств, но все они так или иначе сводятся к уже известному нам методу интервалов. Поэтому прежде чем разбирать эти способы, давайте вспомним старые факты, иначе толку от нового материла не будет никакого.

Что уже нужно знать

Важных фактов не бывает много. Действительно потребуются нам всего четыре.

Формулы сокращённого умножения

Да, да: они будут преследовать нас на протяжении всей школьной программы математики. И в университете тоже. Этих формул довольно много, но нам потребуются лишь следующие:

\[\begin{align} & {{a}^{2}}\pm 2ab+{{b}^{2}}={{\left(a\pm b \right)}^{2}}; \\ & {{a}^{2}}-{{b}^{2}}=\left(a-b \right)\left(a+b \right); \\ & {{a}^{3}}+{{b}^{3}}=\left(a+b \right)\left({{a}^{2}}-ab+{{b}^{2}} \right); \\ & {{a}^{3}}-{{b}^{3}}=\left(a-b \right)\left({{a}^{2}}+ab+{{b}^{2}} \right). \\ \end{align}\]

Обратите внимание на последние две формулы — это сумма и разность кубов (а не куб суммы или разности!). Их легко запомнить, если заметить, что знак в первой скобке совпадает со знаком в исходном выражении, а во второй — противоположен знаку исходного выражения.

Линейные уравнения

Это самые простые уравнения вида $ax+b=0$, где $a$ и $b$ — это обычные числа, причём $a\ne 0$. Такое уравнение решается просто:

\[\begin{align} & ax+b=0; \\ & ax=-b; \\ & x=-\frac{b}{a}. \\ \end{align}\]

Отмечу, что мы имеем право делить на коэффициент $a$, ведь $a\ne 0$. Это требование вполне логично, поскольку при $a=0$ мы получим вот что:

Во-первых, в этом уравнении нет переменной $x$. Это, вообще говоря, не должно нас смущать (такое случается, скажем, в геометрии, причём довольно часто), но всё же перед нами уже не линейное уравнение.

Во-вторых, решение этого уравнения зависит исключительно от коэффициента $b$. Если $b$ — тоже ноль, то наше уравнение имеет вид $0=0$. Данное равенство верно всегда; значит, $x$ — любое число (обычно это записывается так: $x\in \mathbb{R}$). Если же коэффициент $b$ не равен нулю, то равенство $b=0$ никогда не выполняется, т.е. ответов нет (записывается $x\in \varnothing $ и читается «множество решений пусто»).

Чтобы избежать всех этих сложностей, просто полагают $a\ne 0$, что нисколько не ограничивает нас в дальнейших размышлениях.

Квадратные уравнения

Напомню, что квадратным уравнением называется вот это:

Здесь слева многочлен второй степени, причём снова $a\ne 0$ (в противном случае вместо квадратного уравнения мы получим линейное). Решаются такие уравнения через дискриминант:

  1. Если $D \gt 0$, мы получим два различных корня;
  2. Если $D=0$, то корень будет один, но второй кратности (что это за кратность и как её учитывать — об этом чуть позже). Либо можно сказать, что уравнение имеет два одинаковых корня;
  3. При $D \lt 0$ корней вообще нет, а знак многочлена $a{{x}^{2}}+bx+c$ при любом $x$ совпадает со знаком коэффициента $a$. Это, кстати, очень полезный факт, о котором почему-то забывают рассказать на уроках алгебры.

Сами корни считаются по всем известной формуле:

\[{{x}_{1,2}}=\frac{-b\pm \sqrt{D}}{2a}\]

Отсюда, кстати, и ограничения на дискриминант. Ведь квадратный корень из отрицательного числа не существует. По поводу корней у многих учеников жуткая каша в голове, поэтому я специально записал целый урок: что такое корень в алгебре и как его считать — очень рекомендую почитать .:)

Действия с рациональными дробями

Всё, что было написано выше, вы и так знаете, если изучали метод интервалов. А вот то, что мы разберём сейчас, не имеет аналогов в прошлом — это совершенно новый факт.

Определение. Рациональная дробь — это выражение вида

\[\frac{P\left(x \right)}{Q\left(x \right)}\]

где $P\left(x \right)$ и $Q\left(x \right)$ — многочлены.

Очевидно, что из такой дроби легко получить неравенство — достаточно лишь приписать знак «больше» или «меньше» справа. И чуть дальше мы обнаружим, что решать такие задачи — одно удовольствие, там всё очень просто.

Проблемы начинаются тогда, когда в одном выражении находятся несколько таких дробей. Их приходится приводить к общему знаменателю — и именно в этот момент допускается большое количество обидных ошибок.

Поэтому для успешного решения рациональных уравнений необходимо твёрдо усвоить два навыка:

  1. Разложение многочлена $P\left(x \right)$ на множители;
  2. Собственно, приведение дробей к общему знаменателю.

Как разложить многочлен на множители? Очень просто. Пусть у нас есть многочлена вида

Приравниваем его к нулю. Получим уравнение $n$-й степени:

\[{{a}_{n}}{{x}^{n}}+{{a}_{n-1}}{{x}^{n-1}}+...+{{a}_{1}}x+{{a}_{0}}=0\]

Допустим, мы решили это уравнение и получили корни ${{x}_{1}},\ ...,\ {{x}_{n}}$ (не пугайтесь: в большинстве случаев этих корней будет не более двух). В таком случае наш исходный многочлен можно переписать так:

\[\begin{align} & P\left(x \right)={{a}_{n}}{{x}^{n}}+{{a}_{n-1}}{{x}^{n-1}}+...+{{a}_{1}}x+{{a}_{0}}= \\ & ={{a}_{n}}\left(x-{{x}_{1}} \right)\cdot \left(x-{{x}_{2}} \right)\cdot ...\cdot \left(x-{{x}_{n}} \right) \end{align}\]

Вот и всё! Обратите внимание: старший коэффициент ${{a}_{n}}$ никуда не исчез — он будет отдельным множителем перед скобками, и при необходимости его можно внести в любую из этих скобок (практика показывает, что при ${{a}_{n}}\ne \pm 1$ среди корней почти всегда есть дроби).

Задача. Упростите выражение:

\[\frac{{{x}^{2}}+x-20}{x-4}-\frac{2{{x}^{2}}-5x+3}{2x-3}-\frac{4-8x-5{{x}^{2}}}{x+2}\]

Решение. Для начала посмотрим на знаменатели: все они — линейные двучлены, и раскладывать на множители тут нечего. Поэтому давайте разложим на множители числители:

\[\begin{align} & {{x}^{2}}+x-20=\left(x+5 \right)\left(x-4 \right); \\ & 2{{x}^{2}}-5x+3=2\left(x-\frac{3}{2} \right)\left(x-1 \right)=\left(2x-3 \right)\left(x-1 \right); \\ & 4-8x-5{{x}^{2}}=-5\left(x+2 \right)\left(x-\frac{2}{5} \right)=\left(x+2 \right)\left(2-5x \right). \\\end{align}\]

Обратите внимание: во втором многочлене старший коэффициент «2» в полном соответствии с нашей схемой сначала оказался перед скобкой, а затем был внесён в первую скобку, поскольку там вылезла дробь.

То же самое произошло и в третьем многочлене, только там ещё и порядок слагаемых перепутан. Однако коэффициент «−5» в итоге оказался внесён во вторую скобку (помните: вносить множитель можно в одну и только в одну скобку!), что избавило нас от неудобств, связанных с дробными корнями.

Что касается первого многочлена, там всё просто: его корни ищутся либо стандартно через дискриминант, либо по теореме Виета.

Вернёмся к исходному выражению и перепишем его с разложенными на множители числителями:

\[\begin{matrix} \frac{\left(x+5 \right)\left(x-4 \right)}{x-4}-\frac{\left(2x-3 \right)\left(x-1 \right)}{2x-3}-\frac{\left(x+2 \right)\left(2-5x \right)}{x+2}= \\ =\left(x+5 \right)-\left(x-1 \right)-\left(2-5x \right)= \\ =x+5-x+1-2+5x= \\ =5x+4. \\ \end{matrix}\]

Ответ: $5x+4$.

Как видите, ничего сложного. Немного математики 7—8 класса — и всё. Смысл всех преобразований в том и состоит, чтобы получить из сложного и страшного выражения что-нибудь простое, с чем легко работать.

Однако так будет не всегда. Поэтому сейчас мы рассмотрим более серьёзную задачу.

Но сначала разберёмся с тем, как привести две дроби к общему знаменателю. Алгоритм предельно прост:

  1. Разложить на множители оба знаменателя;
  2. Рассмотреть первый знаменатель и добавить к нему множители, имеющиеся во втором знаменателе, однако отсутствующие в первом. Полученное произведение и будет общим знаменателем;
  3. Выяснить, каких множителей не хватает каждой из исходных дробей, чтобы знаменатели стали равны общему.

Возможно, этот алгоритм вам покажется просто текстом, в котором «много букв». Поэтому разберём всё на конкретном примере.

Задача. Упростите выражение:

\[\left(\frac{x}{{{x}^{2}}+2x+4}+\frac{{{x}^{2}}+8}{{{x}^{3}}-8}-\frac{1}{x-2} \right)\cdot \left(\frac{{{x}^{2}}}{{{x}^{2}}-4}-\frac{2}{2-x} \right)\]

Решение. Такие объёмные задачи лучше решать по частям. Выпишем то, что стоит в первой скобке:

\[\frac{x}{{{x}^{2}}+2x+4}+\frac{{{x}^{2}}+8}{{{x}^{3}}-8}-\frac{1}{x-2}\]

В отличие от предыдущей задачи, тут со знаменателями всё не так просто. Разложим на множители каждый из них.

Квадратный трёхчлен ${{x}^{2}}+2x+4$ на множители не раскладывается, поскольку уравнение ${{x}^{2}}+2x+4=0$ не имеет корней (дискриминант отрицательный). Оставляем его без изменений.

Второй знаменатель — кубический многочлен ${{x}^{3}}-8$ — при внимательном рассмотрении является разностью кубов и легко раскладывается по формулам сокращённого умножения:

\[{{x}^{3}}-8={{x}^{3}}-{{2}^{3}}=\left(x-2 \right)\left({{x}^{2}}+2x+4 \right)\]

Больше ничего разложить на множители нельзя, поскольку в первой скобке стоит линейный двучлен, а во второй — уже знакомая нам конструкция, которая не имеет действительных корней.

Наконец, третий знаменатель представляет собой линейный двучлен, который нельзя разложить. Таким образом, наше уравнение примет вид:

\[\frac{x}{{{x}^{2}}+2x+4}+\frac{{{x}^{2}}+8}{\left(x-2 \right)\left({{x}^{2}}+2x+4 \right)}-\frac{1}{x-2}\]

Совершенно очевидно, что общим знаменателем будет именно $\left(x-2 \right)\left({{x}^{2}}+2x+4 \right)$, и для приведения к нему всех дробей необходимо первую дробь домножить на $\left(x-2 \right)$, а последнюю — на $\left({{x}^{2}}+2x+4 \right)$. Затем останется лишь привести подобные:

\[\begin{matrix} \frac{x\cdot \left(x-2 \right)}{\left(x-2 \right)\left({{x}^{2}}+2x+4 \right)}+\frac{{{x}^{2}}+8}{\left(x-2 \right)\left({{x}^{2}}+2x+4 \right)}-\frac{1\cdot \left({{x}^{2}}+2x+4 \right)}{\left(x-2 \right)\left({{x}^{2}}+2x+4 \right)}= \\ =\frac{x\cdot \left(x-2 \right)+\left({{x}^{2}}+8 \right)-\left({{x}^{2}}+2x+4 \right)}{\left(x-2 \right)\left({{x}^{2}}+2x+4 \right)}= \\ =\frac{{{x}^{2}}-2x+{{x}^{2}}+8-{{x}^{2}}-2x-4}{\left(x-2 \right)\left({{x}^{2}}+2x+4 \right)}= \\ =\frac{{{x}^{2}}-4x+4}{\left(x-2 \right)\left({{x}^{2}}+2x+4 \right)}. \\ \end{matrix}\]

Обратите внимание на вторую строчку: когда знаменатель уже общий, т.е. вместо трёх отдельных дробей мы написали одну большую, не стоит сразу избавляться от скобок. Лучше напишите лишнюю строчку и отметьте, что, скажем, перед третьей дробью стоял минус — и он никуда не денется, а будет «висеть» в числителе перед скобкой. Это избавит вас от множества ошибок.

Ну и в последней строчке полезно разложить на множители числитель. Тем более что это точный квадрат, и нам на помощь вновь приходят формулы сокращённого умножения. Имеем:

\[\frac{{{x}^{2}}-4x+4}{\left(x-2 \right)\left({{x}^{2}}+2x+4 \right)}=\frac{{{\left(x-2 \right)}^{2}}}{\left(x-2 \right)\left({{x}^{2}}+2x+4 \right)}=\frac{x-2}{{{x}^{2}}+2x+4}\]

Теперь точно так же разберёмся со второй скобкой. Тут я просто напишу цепочку равенств:

\[\begin{matrix} \frac{{{x}^{2}}}{{{x}^{2}}-4}-\frac{2}{2-x}=\frac{{{x}^{2}}}{\left(x-2 \right)\left(x+2 \right)}-\frac{2}{2-x}= \\ =\frac{{{x}^{2}}}{\left(x-2 \right)\left(x+2 \right)}+\frac{2}{x-2}= \\ =\frac{{{x}^{2}}}{\left(x-2 \right)\left(x+2 \right)}+\frac{2\cdot \left(x+2 \right)}{\left(x-2 \right)\cdot \left(x+2 \right)}= \\ =\frac{{{x}^{2}}+2\cdot \left(x+2 \right)}{\left(x-2 \right)\left(x+2 \right)}=\frac{{{x}^{2}}+2x+4}{\left(x-2 \right)\left(x+2 \right)}. \\ \end{matrix}\]

Возвращаемся к исходной задачи и смотрим на произведение:

\[\frac{x-2}{{{x}^{2}}+2x+4}\cdot \frac{{{x}^{2}}+2x+4}{\left(x-2 \right)\left(x+2 \right)}=\frac{1}{x+2}\]

Ответ: \[\frac{1}{x+2}\].

Смысл этой задачи такой же, как и у предыдущей: показать, насколько могут упрощаться рациональные выражения, если подойти к их преобразованию с умом.

И вот теперь, когда вы всё это знаете, давайте перейдём к основной теме сегодняшнего урока — решению дробно-рациональных неравенств. Тем более что после такой подготовки сами неравенства вы будете щёлкать как орешки.:)

Основной способ решения рациональных неравенств

Существует как минимум два подхода к решению рациональных неравенств. Сейчас мы рассмотрим один из них — тот, который является общепринятым в школьном курсе математики.

Но для начала отметим важную деталь. Все неравенства делятся на два типа:

  1. Строгие: $f\left(x \right) \gt 0$ или $f\left(x \right) \lt 0$;
  2. Нестрогие: $f\left(x \right)\ge 0$ или $f\left(x \right)\le 0$.

Неравенства второго типа легко сводятся к первому, а также уравнению:

Это небольшое «дополнение» $f\left(x \right)=0$ приводит к такой неприятной штуке как закрашенные точки — мы познакомились с ними ещё в методе интервалов. В остальном никаких отличий между строгими и нестрогими неравенствами нет, поэтому давайте разберём универсальный алгоритм:

  1. Собрать все ненулевые элементы с одной стороны от знака неравенства. Например, слева;
  2. Привести все дроби к общему знаменателю (если таких дробей окажется несколько), привести подобные. Затем по возможности разложить на числитель и знаменатель на множители. Так или иначе мы получим неравенство вида $\frac{P\left(x \right)}{Q\left(x \right)}\vee 0$, где «галочка» — знак неравенства.
  3. Приравниваем числитель к нулю: $P\left(x \right)=0$. Решаем это уравнение и получаем корни ${{x}_{1}}$, ${{x}_{2}}$, ${{x}_{3}}$, ... Затем требуем, чтобы знаменатель был не равен нулю: $Q\left(x \right)\ne 0$. Разумеется, по сути приходится решить уравнение $Q\left(x \right)=0$, и мы получим корни $x_{1}^{*}$, $x_{2}^{*}$, $x_{3}^{*}$, ... (в настоящих задачах таких корней вряд ли будет больше трёх).
  4. Отмечаем все эти корни (и со звёздочками, и без) на единой числовой прямой, причём корни без звёзд закрашены, а со звёздами — выколоты.
  5. Расставляем знаки «плюс» и «минус», выбираем те интервалы, которые нам нужны. Если неравенство имеет вид $f\left(x \right) \gt 0$, то в ответ пойдут интервалы, отмеченные «плюсом». Если $f\left(x \right) \lt 0$, то смотрим на интервалы с «минусами».

Практика показывает, что наибольшие трудности вызывают пункты 2 и 4 — грамотные преобразования и правильная расстановка чисел в порядке возрастания. Ну, и на последнем шаге будьте предельно внимательны: мы всегда расставляем знаки, опираясь на самое последнее неравенство, записанное перед переходом к уравнениям . Это универсальное правило, унаследованное ещё от метода интервалов.

Итак, схема есть. Давайте потренируемся.

Задача. Решите неравенство:

\[\frac{x-3}{x+7} \lt 0\]

Решение. Перед нами строгое неравенство вида $f\left(x \right) \lt 0$. Очевидно, пункты 1 и 2 из нашей схемы уже выполнены: все элементы неравенства собраны слева, к общему знаменателю ничего приводить не надо. Поэтому переходим сразу к третьему пункту.

Приравниваем к нулю числитель:

\[\begin{align} & x-3=0; \\ & x=3. \end{align}\]

И знаменатель:

\[\begin{align} & x+7=0; \\ & {{x}^{*}}=-7. \\ \end{align}\]

В этом месте многие залипают, ведь по идее нужно записать $x+7\ne 0$, как того требует ОДЗ (на ноль делить нельзя, вот это вот всё). Но ведь в дальнейшем мы будем выкалывать точки, пришедшие из знаменателя, поэтому лишний раз усложнять свои выкладки не стоит — пишите везде знак равенства и не парьтесь. Никто за это баллы не снизит.:)

Четвёртый пункт. Отмечаем полученные корни на числовой прямой:

Все точки выколоты, поскольку неравенство — строгое

Обратите внимание: все точки выколоты, поскольку исходное неравенство строгое . И тут уже неважно: из числителя эти точки пришли или из знаменателя.

Ну и смотрим знаки. Возьмём любое число ${{x}_{0}} \gt 3$. Например, ${{x}_{0}}=100$ (но с тем же успехом можно было взять ${{x}_{0}}=3,1$ или ${{x}_{0}}=1\ 000\ 000$). Получим:

Итак, справа от всех корней у нас положительная область. А при переходе через каждый корень знак меняется (так будет не всегда, но об это позже). Поэтому переходим к пятому пункту: расставляем знаки и выбираем нужное:

Возвращаемся к последнему неравенству, которое было перед решением уравнений. Собственно, оно совпадает с исходным, ведь никаких преобразований в этой задаче мы не выполняли.

Поскольку требуется решить неравенство вида $f\left(x \right) \lt 0$, я заштриховал интервал $x\in \left(-7;3 \right)$ — он единственный отмечен знаком «минус». Это и есть ответ.

Ответ: $x\in \left(-7;3 \right)$

Вот и всё! Разве сложно? Нет, не сложно. Правда, и задачка была лёгкая. Сейчас чуть усложним миссию и рассмотрим более «навороченное» неравенство. При его решении я уже не буду давать столь подробных выкладок — просто обозначу ключевые моменты. В общим, оформим его так, как оформляли бы на самостоятельной работе или экзамене.:)

Задача. Решите неравенство:

\[\frac{\left(7x+1 \right)\left(11x+2 \right)}{13x-4}\ge 0\]

Решение. Это нестрогое неравенство вида $f\left(x \right)\ge 0$. Все ненулевые элементы собраны слева, разных знаменателей нет. Переходим к уравнениям.

Числитель:

\[\begin{align} & \left(7x+1 \right)\left(11x+2 \right)=0 \\ & 7x+1=0\Rightarrow {{x}_{1}}=-\frac{1}{7}; \\ & 11x+2=0\Rightarrow {{x}_{2}}=-\frac{2}{11}. \\ \end{align}\]

Знаменатель:

\[\begin{align} & 13x-4=0; \\ & 13x=4; \\ & {{x}^{*}}=\frac{4}{13}. \\ \end{align}\]

Не знаю, что за извращенец составлял эту задачу, но корни получились не очень: их будет трудно расставить на числовой прямой. И если с корнем ${{x}^{*}}={4}/{13}\;$ всё более-менее ясно (это единственное положительное число — оно будет справа), то ${{x}_{1}}=-{1}/{7}\;$ и ${{x}_{2}}=-{2}/{11}\;$ требуют дополнительного исследования: какое из них больше?

Выяснить это можно, например, так:

\[{{x}_{1}}=-\frac{1}{7}=-\frac{2}{14} \gt -\frac{2}{11}={{x}_{2}}\]

Надеюсь, не нужно объяснять, почему числовая дробь $-{2}/{14}\; \gt -{2}/{11}\;$? Если нужно, рекомендую вспомнить, как выполнять действия с дробями .

А мы отмечаем все три корня на числовой прямой:

Точки из числителя закрашены, из знаменателя — выколоты

Расставляем знаки. Например, можно взять ${{x}_{0}}=1$ и выяснить знак в этой точке:

\[\begin{align} & f\left(x \right)=\frac{\left(7x+1 \right)\left(11x+2 \right)}{13x-4}; \\ & f\left(1 \right)=\frac{\left(7\cdot 1+1 \right)\left(11\cdot 1+2 \right)}{13\cdot 1-4}=\frac{8\cdot 13}{9} \gt 0. \\\end{align}\]

Последним неравенством перед уравнениями было $f\left(x \right)\ge 0$, поэтому нас интересует знак «плюс».

Получили два множества: один — обычный отрезок, а другой — открытый луч на числовой прямой.

Ответ: $x\in \left[ -\frac{2}{11};-\frac{1}{7} \right]\bigcup \left(\frac{4}{13};+\infty \right)$

Важное замечание по поводу чисел, которые мы подставляем для выяснения знака на самом правом интервале. Совершенно необязательно подставлять число, близкое к самому правому корню. Можно брать миллиарды или даже «плюс-бесконечность» — в этом случае знак многочлена стоящего в скобке, числителе или знаменателе, определяется исключительно знаком старшего коэффициента.

Давайте ещё раз посмотрим на функцию $f\left(x \right)$ из последнего неравенства:

В её записи присутствуют три многочлена:

\[\begin{align} & {{P}_{1}}\left(x \right)=7x+1; \\ & {{P}_{2}}\left(x \right)=11x+2; \\ & Q\left(x \right)=13x-4. \end{align}\]

Все они являются линейными двучленами, и у всех старшие коэффициенты (числа 7, 11 и 13) положительны. Следовательно, при подстановке очень больших чисел сами многочлены тоже будут положительны.:)

Это правило может показаться чрезмерно сложным, но только поначалу, когда мы разбираем совсем лёгкие задачи. В серьёзных неравенствах подстановка «плюс-бесконечности» позволит нам выяснить знаки намного быстрее, нежели стандартное ${{x}_{0}}=100$.

Мы очень скоро столкнёмся с такими задачами. Но сначала разберём альтернативный способ решения дробно-рациональных неравенств.

Альтернативный способ

Этот приём мне подсказала одна из моих учениц. Сам я никогда им не пользовался, однако практика показала, что многим ученикам действительно удобнее решать неравенства именно таким способом.

Итак, исходные данные те же. Нужно решить дробно-рациональное неравенство:

\[\frac{P\left(x \right)}{Q\left(x \right)} \gt 0\]

Давайте подумаем: чем многочлен $Q\left(x \right)$ «хуже» многочлена $P\left(x \right)$? Из-за чего нам приходится рассматривать отдельные группы корней (со звёздочкой и без), думать о выколотых точках и т.д.? Всё просто: у дроби есть область определения, согласной которой дробь имеет смысл только тогда, когда её знаменатель отличен от нуля.

В остальном никаких отличий между числителем и знаменателем не прослеживается: мы так же приравниваем его к нулю, ищем корни, затем отмечаем их на числовой прямой. Так почему бы не заменить дробную черту (фактически — знак деления) обычным умножением, а все требования ОДЗ прописать в виде отдельного неравенства? Например, так:

\[\frac{P\left(x \right)}{Q\left(x \right)} \gt 0\Rightarrow \left\{ \begin{align} & P\left(x \right)\cdot Q\left(x \right) \gt 0, \\ & Q\left(x \right)\ne 0. \\ \end{align} \right.\]

Обратите внимание: такой подход позволит свести задачу к методу интервалов, но при этом нисколько не усложнит решение. Ведь всё равно мы будем приравнивать многочлен $Q\left(x \right)$ к нулю.

Давайте посмотрим, как это работает на реальных задачах.

Задача. Решите неравенство:

\[\frac{x+8}{x-11} \gt 0\]

Решение. Итак, переходим к методу интервалов:

\[\frac{x+8}{x-11} \gt 0\Rightarrow \left\{ \begin{align} & \left(x+8 \right)\left(x-11 \right) \gt 0, \\ & x-11\ne 0. \\ \end{align} \right.\]

Первое неравенство решается элементарно. Просто приравниваем каждую скобку к нулю:

\[\begin{align} & x+8=0\Rightarrow {{x}_{1}}=-8; \\ & x-11=0\Rightarrow {{x}_{2}}=11. \\ \end{align}\]

Со вторым неравенством тоже всё просто:

Отмечаем точки ${{x}_{1}}$ и ${{x}_{2}}$ на числовой прямой. Все они выколоты, поскольку неравенство строгое:

Правая точка оказалась выколотой дважды. Это нормально.

Обратите внимание на точку $x=11$. Получается, что она «дважды выколота»: с одной стороны, мы выкалываем её из-за строгости неравенства, с другой — из-за дополнительного требования ОДЗ.

В любом случае, это будет просто выколотая точка. Поэтому расставляем знаки для неравенства $\left(x+8 \right)\left(x-11 \right) \gt 0$ — последнего, которое мы видели перед тем, как начали решать уравнения:

Нас интересуют положительные области, поскольку мы решаем неравенство вида $f\left(x \right) \gt 0$ — их и закрасим. Осталось лишь записать ответ.

Ответ. $x\in \left(-\infty ;-8 \right)\bigcup \left(11;+\infty \right)$

На примере этого решения хотел бы предостеречь вас от распространённой ошибки среди начинающих учеников. А именно: никогда не раскрывайте скобки в неравенствах! Наоборот, старайтесь всё разложить на множители — это упростит решение и избавит вас от множества проблем.

Теперь попробуем кое-что посложнее.

Задача. Решите неравенство:

\[\frac{\left(2x-13 \right)\left(12x-9 \right)}{15x+33}\le 0\]

Решение. Это нестрогое неравенство вида $f\left(x \right)\le 0$, поэтому здесь нужно внимательно следить за закрашенными точками.

Переходим к методу интервалов:

\[\left\{ \begin{align} & \left(2x-13 \right)\left(12x-9 \right)\left(15x+33 \right)\le 0, \\ & 15x+33\ne 0. \\ \end{align} \right.\]

Переходим к уравнению:

\[\begin{align} & \left(2x-13 \right)\left(12x-9 \right)\left(15x+33 \right)=0 \\ & 2x-13=0\Rightarrow {{x}_{1}}=6,5; \\ & 12x-9=0\Rightarrow {{x}_{2}}=0,75; \\ & 15x+33=0\Rightarrow {{x}_{3}}=-2,2. \\ \end{align}\]

Учитываем дополнительное требование:

Отмечаем все полученные корни на числовой прямой:

Если точка одновременно и выколота, и закрашена, она считается выколотой

Опять две точки «накладываются» друг на друга — это нормально, так будет всегда. Важно лишь понимать, что точка, отмеченная одновременно выколотой и закрашенной, на самом деле является выколотой. Т.е. «выкалывание» — более сильное действие, чем «закрашивание».

Это абсолютно логично, ведь выкалыванием мы отмечаем точки, которые влияют на знак функции, но сами не участвуют в ответе. И если в какой-то момент число перестаёт нас устраивать (например, не попадает в ОДЗ), мы вычёркиваем его из рассмотрения до самого конца задачи.

В общем, хватит философствовать. Расставляем знаки и закрашиваем те интервалы, которые отмечены знаком «минус»:

Ответ. $x\in \left(-\infty ;-2,2 \right)\bigcup \left[ 0,75;6,5 \right]$.

И снова хотел обратить ваше внимание вот на это уравнение:

\[\left(2x-13 \right)\left(12x-9 \right)\left(15x+33 \right)=0\]

Ещё раз: никогда не раскрывайте скобки в таких уравнениях! Вы только усложните себе задачу. Помните: произведение равно нулю, когда хотя бы один из множителей равен нулю. Следовательно, данное уравнение просто «разваливается» на несколько более мелких, которые мы и решали в предыдущей задаче.

Учёт кратности корней

Из предыдущих задач легко заметить, что наибольшую сложность представляют именно нестрогие неравенства, потому как в них приходится следить за закрашенными точками.

Но в мире есть ещё большее зло — это кратные корни в неравенствах. Тут уже приходится следить не за какими-то там закрашенными точками — тут знак неравенства может внезапно не поменяться при переходе через эти самые точки.

Ничего подобного мы в этом уроке ещё не рассматривали (хотя аналогичная проблема часто встречалась в методе интервалов). Поэтому введём новое определение:

Определение. Корень уравнения ${{\left(x-a \right)}^{n}}=0$ равен $x=a$ и называется корнем $n$-й кратности.

Собственно, нас не особо интересует точное значение кратности. Важно лишь то, чётным или нечётным является это самое число $n$. Потому что:

  1. Если $x=a$ — корень чётной кратности, то знак функции при переходе через него не меняется;
  2. И наоборот, если $x=a$ — корень нечётной кратности, то знак функции поменяется.

Частным случаем корня нечётной кратности являются все предыдущие задачи, рассмотренные в этом уроке: там везде кратность равна единице.

И ещё. Перед тем, как мы начнём решать задачи, хотел бы обратить ваше внимание на одну тонкость, которая покажется очевидной для опытного ученика, но вгоняет в ступор многих начинающих. А именно:

Корень кратности $n$ возникает только в том случае, когда в эту степень возводится всё выражение: ${{\left(x-a \right)}^{n}}$, а никак не $\left({{x}^{n}}-a \right)$.

Ещё раз: скобка ${{\left(x-a \right)}^{n}}$ даёт нам корень $x=a$ кратности $n$, а вот скобка $\left({{x}^{n}}-a \right)$ или, как часто бывает, $(a-{{x}^{n}})$ даёт нам корень (или два корня, если $n$ — чётное) первой кратности вне зависимости от того, чему равно $n$.

Сравните:

\[{{\left(x-3 \right)}^{5}}=0\Rightarrow x=3\left(5k \right)\]

Здесь всё чётко: вся скобка возводилась в пятую степень, поэтому на выходе мы получили корень пятой степени. А теперь:

\[\left({{x}^{2}}-4 \right)=0\Rightarrow {{x}^{2}}=4\Rightarrow x=\pm 2\]

Мы получили два корня, но оба они имеют первую кратность. Или вот ещё:

\[\left({{x}^{10}}-1024 \right)=0\Rightarrow {{x}^{10}}=1024\Rightarrow x=\pm 2\]

И пусть вас не смущает десятая степень. Главное, что 10 — это чётное число, поэтому на выходе имеем два корня, и оба они вновь имеют первую кратность.

В общем будьте внимательны: кратность возникает только тогда, когда степень относится ко всей скобке, а не только к переменной .

Задача. Решите неравенство:

\[\frac{{{x}^{2}}{{\left(6-x \right)}^{3}}\left(x+4 \right)}{{{\left(x+7 \right)}^{5}}}\ge 0\]

Решение. Попробуем решить её альтернативным способом — через переход от частного к произведению:

\[\left\{ \begin{align} & {{x}^{2}}{{\left(6-x \right)}^{3}}\left(x+4 \right)\cdot {{\left(x+7 \right)}^{5}}\ge 0, \\ & {{\left(x+7 \right)}^{5}}\ne 0. \\ \end{align} \right.\]

Разбираемся с первым неравенством методом интервалов:

\[\begin{align} & {{x}^{2}}{{\left(6-x \right)}^{3}}\left(x+4 \right)\cdot {{\left(x+7 \right)}^{5}}=0; \\ & {{x}^{2}}=0\Rightarrow x=0\left(2k \right); \\ & {{\left(6-x \right)}^{3}}=0\Rightarrow x=6\left(3k \right); \\ & x+4=0\Rightarrow x=-4; \\ & {{\left(x+7 \right)}^{5}}=0\Rightarrow x=-7\left(5k \right). \\ \end{align}\]

Дополнительно решаем второе неравенство. На самом деле мы уже решали его, но чтобы проверяющие не придрались к решению, лучше решить его ещё раз:

\[{{\left(x+7 \right)}^{5}}\ne 0\Rightarrow x\ne -7\]

Обратите внимание: никаких кратностей в последнем неравенстве нет. В самом деле: какая разница, сколько раз вычёркивать точку $x=-7$ на числовой прямой? Хоть один раз, хоть пять — результат будет один и тот же: выколотая точка.

Отметим всё, что мы получили, на числовой прямой:

Как я и говорил, точка $x=-7$ в итоге будет выколота. Кратности расставлены исходя из решения неравенства методом интервалов.

Осталось расставить знаки:

Поскольку точка $x=0$ является корнем чётной кратности, знак при переходе через неё не меняется. Остальные точки имеют нечётную кратность, и с ними всё просто.

Ответ. $x\in \left(-\infty ;-7 \right)\bigcup \left[ -4;6 \right]$

Ещё раз обратите внимание на $x=0$. Из-за чётной кратности возникает интересный эффект: слева от неё всё закрашено, справа — тоже, да и сама точка вполне себе закрашена.

Как следствие, её не нужно обособлять при записи ответа. Т.е. не надо писать что-нибудь в духе $x\in \left[ -4;0 \right]\bigcup \left[ 0;6 \right]$ (хотя формально такой ответ тоже будет правильным). Вместо этого сразу пишем $x\in \left[ -4;6 \right]$.

Такие эффекты возможны только при корнях чётной кратности. И в следующей задаче мы столкнёмся с обратным «проявлением» этого эффекта. Готовы?

Задача. Решите неравенство:

\[\frac{{{\left(x-3 \right)}^{4}}\left(x-4 \right)}{{{\left(x-1 \right)}^{2}}\left(7x-10-{{x}^{2}} \right)}\ge 0\]

Решение. В этот раз пойдём по стандартной схеме. Приравниваем к нулю числитель:

\[\begin{align} & {{\left(x-3 \right)}^{4}}\left(x-4 \right)=0; \\ & {{\left(x-3 \right)}^{4}}=0\Rightarrow {{x}_{1}}=3\left(4k \right); \\ & x-4=0\Rightarrow {{x}_{2}}=4. \\ \end{align}\]

И знаменатель:

\[\begin{align} & {{\left(x-1 \right)}^{2}}\left(7x-10-{{x}^{2}} \right)=0; \\ & {{\left(x-1 \right)}^{2}}=0\Rightarrow x_{1}^{*}=1\left(2k \right); \\ & 7x-10-{{x}^{2}}=0\Rightarrow x_{2}^{*}=5;\ x_{3}^{*}=2. \\ \end{align}\]

Поскольку мы решаем нестрогое неравенство вида $f\left(x \right)\ge 0$, корни из знаменателя (которые со звёздочками) будут выколоты, а из числителя — закрашены.

Расставляем знаки и штрихуем области, отмеченные «плюсом»:

Точка $x=3$ — изолированная. Это часть ответа

Перед тем, как записать окончательный ответ, внимательно посмотрим на картинку:

  1. Точка $x=1$ имеет чётную кратность, но сама выколота. Следовательно, её придётся обособить в ответе: нужно записать $x\in \left(-\infty ;1 \right)\bigcup \left(1;2 \right)$, а никак не $x\in \left(-\infty ;2 \right)$.
  2. Точка $x=3$ тоже имеет чётную кратность и при этом закрашена. Расстановка знаков свидетельствует, что сама точка нас устраивает, но шаг влево-вправо — и мы попадаем в область, которая нас точно не устраивает. Такие точки называются изолированными и записываются в виде $x\in \left\{ 3 \right\}$.

Объединяем все полученные кусочки в общее множество и записываем ответ.

Ответ: $x\in \left(-\infty ;1 \right)\bigcup \left(1;2 \right)\bigcup \left\{ 3 \right\}\bigcup \left[ 4;5 \right)$

Определение. Решить неравенство — значит найти множество всех его решений , либо доказать, что это множество пусто.

Казалось бы: что тут может быть непонятны? Да в том-то и дело, что множества можно задавать по-разному. Давайте ещё раз выпишем ответ к последней задаче:

Читаем буквально, что написано. Переменная «икс» принадлежит некому множеству, которое получается объединением (значок «U») четырёх отдельных множеств:

  • Интервал $\left(-\infty ;1 \right)$, который буквально означает «все числа, меньшие единицы, но не сама единица»;
  • Интервал $\left(1;2 \right)$, т.е. «все числа в пределах от 1 до 2, но не сами числа 1 и 2»;
  • Множество $\left\{ 3 \right\}$, состоящее из одного-единственного числа — тройки;
  • Интервал $\left[ 4;5 \right)$, содержащий все числа в пределах от 4 до 5, а также саму четвёрку, но не пятёрку.

Интерес здесь представляет третий пункт. В отличие от интервалов, которые задают бесконечные наборы чисел и лишь обозначают лишь границы этих наборов, множество $\left\{ 3 \right\}$ задаёт строго одно число путём перечисления.

Чтобы понять, что мы именно перечисляем конкретные числа, входящие в множество (а не задаём границы или что-либо ещё), используются фигурные скобки. Например, запись $\left\{ 1;2 \right\}$ означает именно «множество, состоящее из двух чисел: 1 и 2», но никак не отрезок от 1 до 2. Ни в коем случае не путайте эти понятия.

Правило сложения кратностей

Ну и в заключение сегодняшнего урока немного жести от Павла Бердова.:)

Внимательные ученики уже наверняка задались вопросом: а что будет, если в числителе и знаменателе обнаружатся одинаковые корни? Так вот, работает следующее правило:

Кратности одинаковых корней складываются. Всегда. Даже если этот корень встречается и в числителе, и в знаменателе.

Иногда лучше решать, чем говорить. Поэтому решаем следующую задачу:

Задача. Решите неравенство:

\[\frac{{{x}^{2}}+6x+8}{\left({{x}^{2}}-16 \right)\left({{x}^{2}}+9x+14 \right)}\ge 0\]

\[\begin{align} & {{x}^{2}}+6x+8=0 \\ & {{x}_{1}}=-2;\ {{x}_{2}}=-4. \\ \end{align}\]

Пока ничего особенного. Приравниваем к нулю знаменатель:

\[\begin{align} & \left({{x}^{2}}-16 \right)\left({{x}^{2}}+9x+14 \right)=0 \\ & {{x}^{2}}-16=0\Rightarrow x_{1}^{*}=4;\ x_{2}^{*}=-4; \\ & {{x}^{2}}+9x+14=0\Rightarrow x_{3}^{*}=-7;\ x_{4}^{*}=-2. \\ \end{align}\]

Обнаружены два одинаковых корня: ${{x}_{1}}=-2$ и $x_{4}^{*}=-2$. Оба имеют первую кратность. Следовательно заменяем их одним корнем $x_{4}^{*}=-2$, но уже с кратностью 1+1=2.

Кроме того, есть ещё одинаковые корни: ${{x}_{2}}=-4$ и $x_{2}^{*}=-4$. Они тоже первой кратности, поэтому останется лишь $x_{2}^{*}=-4$ кратности 1+1=2.

Обратите внимание: в обоих случаях мы оставили именно «выколотый» корень, а «закрашенный» выкинули из рассмотрения. Потому что ещё в начале урока договорились: если точка одновременно и выколотая, и закрашенная, то мы всё равно считаем её выколотой.

В итоге у нас есть четыре корня, причём все оказались выколоты:

\[\begin{align} & x_{1}^{*}=4; \\ & x_{2}^{*}=-4\left(2k \right); \\ & x_{3}^{*}=-7; \\ & x_{4}^{*}=-2\left(2k \right). \\ \end{align}\]

Отмечаем их на числовой прямой с учётом кратности:

Расставляем знаки и закрашиваем интересующие нас области:

Всё. Никаких изолированных точек и прочих извращений. Можно записывать ответ.

Ответ. $x\in \left(-\infty ;-7 \right)\bigcup \left(4;+\infty \right)$.

Правило умножения кратностей

Иногда встречается ещё более неприятная ситуация: уравнение, имеющее кратные корни, само возводится в некоторую степень. При этом меняются кратности всех исходных корней.

Такое встречается редко, поэтому большинство учеников не имеют опыта решения подобных задач. А правило здесь следующее:

При возведении уравнения в степень $n$ кратности всех его корней тоже увеличиваются в $n$ раз.

Другими словами, возведение в степень приводит к умножению кратностей на эту же степень. Рассмотрим это правило на примере:

Задача. Решите неравенство:

\[\frac{x{{\left({{x}^{2}}-6x+9 \right)}^{2}}{{\left(x-4 \right)}^{5}}}{{{\left(2-x \right)}^{3}}{{\left(x-1 \right)}^{2}}}\le 0\]

Решение. Приравниваем к нулю числитель:

Произведение равно нулю, когда хотя бы один из множителей равен нулю. С первым множителем всё понятно: $x=0$. А вот дальше начинаются проблемы:

\[\begin{align} & {{\left({{x}^{2}}-6x+9 \right)}^{2}}=0; \\ & {{x}^{2}}-6x+9=0\left(2k \right); \\ & D={{6}^{3}}-4\cdot 9=0 \\ & {{x}_{2}}=3\left(2k \right)\left(2k \right) \\ & {{x}_{2}}=3\left(4k \right) \\ \end{align}\]

Как видим, уравнение ${{x}^{2}}-6x+9=0$ имеет единственный корень второй кратности: $x=3$. Затем всё это уравнение возводится в квадрат. Следовательно, кратность корня составит $2\cdot 2=4$, что мы в итоге и записали.

\[{{\left(x-4 \right)}^{5}}=0\Rightarrow x=4\left(5k \right)\]

Со знаменателем тоже никаких проблем:

\[\begin{align} & {{\left(2-x \right)}^{3}}{{\left(x-1 \right)}^{2}}=0; \\ & {{\left(2-x \right)}^{3}}=0\Rightarrow x_{1}^{*}=2\left(3k \right); \\ & {{\left(x-1 \right)}^{2}}=0\Rightarrow x_{2}^{*}=1\left(2k \right). \\ \end{align}\]

В сумме у нас получилось пять точек: две выколотых и три закрашенных. Совпадающих корней в числителе и знаменателе не наблюдается, поэтому просто отмечаем их на числовой прямой:

Расставляем знаки с учётом кратностей и закрашиваем интересующие нас интервалы:

Снова одна изолированная точка и одна выколотая

Из-за корней чётной кратности вновь получили парочку «нестандартных» элементов. Это $x\in \left[ 0;1 \right)\bigcup \left(1;2 \right)$, а никак не $x\in \left[ 0;2 \right)$, а также изолированная точка $x\in \left\{ 3 \right\}$.

Ответ. $x\in \left[ 0;1 \right)\bigcup \left(1;2 \right)\bigcup \left\{ 3 \right\}\bigcup \left[ 4;+\infty \right)$

Как видите, всё не так сложно. Главное — внимательность. Последний раздел этого урока посвящён преобразованиям — тем самым, которые мы обсуждали в самом начале.

Предварительные преобразования

Неравенства, которые мы разберём в этом разделе, нельзя назвать сложными. Однако в отличие от предыдущих задач здесь придётся применить навыки из теории рациональных дробей — разложение на множители и приведение к общему знаменателю.

Мы детально обсуждали этот вопрос в самом начале сегодняшнего урока. Если вы не уверены, что понимаете, о чём речь — настоятельно рекомендую вернуться и повторить. Потому что нет никакого смысла зубрить методы решения неравенств, если вы «плаваете» в преобразовании дробей.

В домашней работе, кстати, тоже будет много подобных задач. Они вынесены в отдельный подраздел. И там вас ждут весьма нетривиальные примеры. Но это будет в домашке, а сейчас давайте разберём парочку таких неравенств.

Задача. Решите неравенство:

\[\frac{x}{x-1}\le \frac{x-2}{x}\]

Решение. Переносим всё влево:

\[\frac{x}{x-1}-\frac{x-2}{x}\le 0\]

Приводим к общему знаменателю, раскрываем скобки, приводим подобные слагаемые в числителе:

\[\begin{align} & \frac{x\cdot x}{\left(x-1 \right)\cdot x}-\frac{\left(x-2 \right)\left(x-1 \right)}{x\cdot \left(x-1 \right)}\le 0; \\ & \frac{{{x}^{2}}-\left({{x}^{2}}-2x-x+2 \right)}{x\left(x-1 \right)}\le 0; \\ & \frac{{{x}^{2}}-{{x}^{2}}+3x-2}{x\left(x-1 \right)}\le 0; \\ & \frac{3x-2}{x\left(x-1 \right)}\le 0. \\\end{align}\]

Теперь перед нами классическое дробно-рациональное неравенство, решение которого уже не представляет трудности. Предлагаю решить его альтернативным методом — через метод интервалов:

\[\begin{align} & \left(3x-2 \right)\cdot x\cdot \left(x-1 \right)=0; \\ & {{x}_{1}}=\frac{2}{3};\ {{x}_{2}}=0;\ {{x}_{3}}=1. \\ \end{align}\]

Не забываем ограничение, пришедшее из знаменателя:

Отмечаем все числа и ограничения на числовой прямой:

Все корни имеют первую кратность. Никаких проблем. Просто расставляем знаки и закрашиваем нужные нам области:

Это всё. Можно записывать ответ.

Ответ. $x\in \left(-\infty ;0 \right)\bigcup \left[ {2}/{3}\;;1 \right)$.

Разумеется, это был совсем уж просто пример. Поэтому сейчас рассмотрим задачу посерьёзнее. И кстати, уровень этой задачи вполне соответствует самостоятельным и контрольным работам по этой теме в 8 классе.

Задача. Решите неравенство:

\[\frac{1}{{{x}^{2}}+8x-9}\ge \frac{1}{3{{x}^{2}}-5x+2}\]

Решение. Переносим всё влево:

\[\frac{1}{{{x}^{2}}+8x-9}-\frac{1}{3{{x}^{2}}-5x+2}\ge 0\]

Перед тем как приводить обе дроби к общему знаменателю, разложим эти знаменатели на множители. Вдруг вылезут одинаковы скобки? С первым знаменателем легко:

\[{{x}^{2}}+8x-9=\left(x-1 \right)\left(x+9 \right)\]

Со вторым чуть сложнее. Не стесняйтесь вносить множитель-константу в ту скобку, где обнаружилась дробь. Помните: исходный многочлен имел целые коэффициенты, поэтому велика вероятность, что и разложение на множители будет иметь целые коэффициенты (на самом деле так будет всегда, за исключением случаев, когда дискриминант иррационален).

\[\begin{align} & 3{{x}^{2}}-5x+2=3\left(x-1 \right)\left(x-\frac{2}{3} \right)= \\ & =\left(x-1 \right)\left(3x-2 \right) \end{align}\]

Как видим, есть общая скобка: $\left(x-1 \right)$. Возвращаемся к неравенству и приводим обе дроби к общему знаменателю:

\[\begin{align} & \frac{1}{\left(x-1 \right)\left(x+9 \right)}-\frac{1}{\left(x-1 \right)\left(3x-2 \right)}\ge 0; \\ & \frac{1\cdot \left(3x-2 \right)-1\cdot \left(x+9 \right)}{\left(x-1 \right)\left(x+9 \right)\left(3x-2 \right)}\ge 0; \\ & \frac{3x-2-x-9}{\left(x-1 \right)\left(x+9 \right)\left(3x-2 \right)}\ge 0; \\ & \frac{2x-11}{\left(x-1 \right)\left(x+9 \right)\left(3x-2 \right)}\ge 0; \\ \end{align}\]

Приравниваем к нулю знаменатель:

\[\begin{align} & \left(x-1 \right)\left(x+9 \right)\left(3x-2 \right)=0; \\ & x_{1}^{*}=1;\ x_{2}^{*}=-9;\ x_{3}^{*}=\frac{2}{3} \\ \end{align}\]

Никаких кратностей и совпадающих корней. Отмечаем четыре числа на прямой:

Расставляем знаки:

Записываем ответ.

Ответ: $x\in \left(-\infty ;-9 \right)\bigcup \left({2}/{3}\;;1 \right)\bigcup \left[ 5,5;+\infty \right)$.

Всё! Лайк тому, то дочитал до этой строчки.:)

Линейными называются неравенства левая и правая часть которых представляет собой линейные функции относительно неизвестной величины. К ним относятся, например, неравенства:

2х-1 -х+3; 7х 0;

5 >4 - 6x 9- x < x + 5 .

1) Строгие неравенства: ax +b>0 либо ax + b<0

2) Нестрогие неравенства: ax +b≤0 либо ax + b 0

Разберем такое задание . Одна из сторон параллелограмма составляет 7см. Какой должна быть длина другой стороны, чтобы периметр параллелограмма был больше 44 см?

Пусть искомая сторона составит х см. В таком случае периметр параллелограмма будет представлен (14 + 2х) см. Неравенство 14 + 2х > 44 является математической моделью задачи о периметре параллелограмма. Если в этом неравенстве заменить переменную х на, например, число 16, то получим верное числовое неравенство 14 + 32 > 44. В таком случае говорят, что число 16 является решением неравенства 14 + 2х > 44.

Решением неравенства называют значение переменной, которое обращает его в верное числовое неравенство.

Следовательно, каждое из чисел 15,1; 20;73 выступают решением неравенства 14 + 2х > 44, а число 10, например, не является его решением.

Решить неравенство означает установить все его решения или доказать, что решений не существует.

Формулировка решения неравенства сходна с формулировкой корня уравнения. И все же не принято обозначать «корень неравенства».

Свойства числовых равенств помогали нам решать уравнения. Точно так же свойства числовых неравенств помогут решать неравенства.

Решая уравнение, мы меняем его другим, более простым уравнением, но равнозначным заданному. По схожей схеме находят ответ и неравенства. При смене уравнения на равнозначное ему уравнение пользуются теоремой о перенесении слагаемых из одной части уравнения в противоположную и об умножении обеих частей уравнения на одно и то же отличное от нуля число. При решении неравенства есть существенное различие его с уравнением, которое заключается в том, что всякое решение уравнения можно проверить просто подстановкой в исходное уравнение. В неравенствах такой способ отсутствует, так как бесчисленное множество решений подставить в исходное неравенство не представляется возможным. Поэтому есть важное понятие, вот эти стрелочки <=> - это знак эквивалентных, или равносильных, преобразований. Преобразование называются равносильными, или эквивалентными , если они не изменяет множества решений.

Сходные правила решения неравенств.

Если какое-либо слагаемое переместить из одной части неравенства в другую, заменив при этом его знак на противоположный, то получим неравенство, эквивалентное данному.

Если обе части неравенства умножить (разделить) на одно и то же положительное число, то получим неравенство, эквивалентное данному.

Если обе части неравенства умножить (разделить) на одно и то же отрицательное число, заменив при этом знак неравенства на противоположный, то получим неравенство, эквивалентное данному.

Используя эти правила вычислим нижеследующие неравенства.

1) Разберем неравенство 2x - 5 > 9 .

Это линейное неравенство , найдем его решение и обсудим основные понятия.

2x - 5 > 9 <=> 2x > 14 (5 перенесли в левую часть с противоположным знаком), далее поделили все на 2 и имеем x > 7 . Нанесем множество решений на ось x

Нами получен положительно направленный луч. Отметим множество решений либо в виде неравенства x > 7 , либо в виде интервала х(7; ∞). А что выступает частным решением этого неравенства? Например, x = 10 - это частное решение этого неравенства, x = 12 - это тоже частное решение этого неравенства.

Частных решений много, но наша задача - найти все решения. А решений, как правило, бесчисленное множество.

Разберем пример 2:

2) Решить неравенство 4a - 11 > a + 13 .

Решим его: а переместим в одну сторону, 11 переместим в другую сторону, получим 3a < 24, и в результате после деления обеих частей на 3 неравенство имеет вид a<8 .

4a - 11 > a + 13 <=> 3a < 24 <=> a < 8 .

Тоже отобразим множество a < 8 , но уже на оси а .

Ответ либо пишем в виде неравенства a < 8, либо а (-∞;8), 8 не включается.

Метод интервалов – простой способ решения дробно-рациональных неравенств. Так называются неравенства, содержащие рациональные (или дробно-рациональные) выражения, зависящие от переменной.

1. Рассмотрим, например, такое неравенство

Метод интервалов позволяет решить его за пару минут.

В левой части этого неравенства – дробно-рациональная функция. Рациональная, потому что не содержит ни корней, ни синусов, ни логарифмов – только рациональные выражения. В правой – нуль.

Метод интервалов основан на следующем свойстве дробно-рациональной функции.

Дробно-рациональная функция может менять знак только в тех точках, в которых она равна нулю или не существует.

Напомним, как раскладывается на множители квадратный трехчлен, то есть выражение вида .

Где и - корни квадратного уравнения .

Рисуем ось и расставляем точки, в которых числитель и знаменатель обращаются в нуль.

Нули знаменателя и - выколотые точки, так как в этих точках функция в левой части неравенства не определена (на нуль делить нельзя). Нули числителя и - закрашены, так как неравенство нестрогое. При и наше неравенство выполняется, так как обе его части равны нулю.

Эти точки разбивают ось на промежутков.

Определим знак дробно-рациональной функции в левой части нашего неравенства на каждом из этих промежутков. Мы помним, что дробно-рациональная функция может менять знак только в тех точках, в которых она равна нулю или не существует. Это значит, что на каждом из промежутков между точками, где числитель или знаменатель обращаются в нуль, знак выражения в левой части неравенства будет постоянным - либо "плюс", либо "минус".

И поэтому для определения знака функции на каждом таком промежутке мы берем любую точку, принадлежащую этому промежутку. Ту, которая нам удобна.
. Возьмем, например, и проверим знак выражения в левой части неравенства. Каждая из "скобок" отрицательная. Левая часть имеет знак .

Следующий промежуток: . Проверим знак при . Получаем, что левая часть поменяла знак на .

Возьмем . При выражение положительно - следовательно, оно положительно на всем промежутке от до .

При левая часть неравенства отрицательна.

И, наконец, class="tex" alt="x>7"> . Подставим и проверим знак выражения в левой части неравенства. Каждая "скобочка" положительна. Следовательно, левая часть имеет знак .

Мы нашли, на каких промежутках выражение положительно. Осталось записать ответ:

Ответ: .

Обратите внимание: знаки на промежутках чередуются. Это произошло потому, что при переходе через каждую точку ровно один из линейных множителей поменял знак, а остальные сохранили его неизменным .

Мы видим, что метод интервалов очень прост. Чтобы решить дробно-рациональное неравенство методом интервалов, приводим его к виду:

Или class="tex" alt="\genfrac{}{}{}{0}{\displaystyle P\left(x \right)}{\displaystyle Q\left(x \right)} > 0"> , или , или .

(в левой части - дробно-рациональная функция, в правой - нуль).

Затем - отмечаем на числовой прямой точки, в которых числитель или знаменатель обращаются в нуль.
Эти точки разбивают всю числовую прямую на промежутки, на каждом из которых дробно-рациональная функция сохраняет свой знак.
Остается только выяснить ее знак на каждом промежутке.
Мы делаем это, проверяя знак выражения в любой точке, принадлежащей данному промежутку. После этого - записываем ответ. Вот и всё.

Но возникает вопрос: всегда ли знаки чередуются? Нет, не всегда! Надо быть внимательным и не расставлять знаки механически и бездумно.

2. Рассмотрим еще одно неравенство.

Class="tex" alt="\genfrac{}{}{}{0}{\displaystyle \left(x-2 \right)^2}{\displaystyle \left(x-1 \right)\left(x-3 \right)}>0">

Снова расставляем точки на оси . Точки и - выколотые, поскольку это нули знаменателя. Точка - тоже выколота, поскольку неравенство строгое.

При числитель положителен, оба множителя в знаменателе отрицательны. Это легко проверить, взяв любое число с данного промежутка, например, . Левая часть имеет знак :

При числитель положителен; первый множитель в знаменателе положителен, второй множитель отрицателен. Левая часть имеет знак :

При ситуация та же! Числитель положителен, первый множитель в знаменателе положителен, второй отрицателен. Левая часть имеет знак :

Наконец, при class="tex" alt="x>3"> все множители положительны, и левая часть имеет знак :

Ответ: .

Почему нарушилось чередование знаков? Потому что при переходе через точку "ответственный" за неё множитель не изменил знак . Следовательно, не изменила знак и вся левая часть нашего неравенства.

Вывод: если линейный множитель стоит в чётной степени (например, в квадрате), то при переходе через точку знак выражения в левой части не меняется . В случае нечётной степени знак, разумеется, меняется.

3. Рассмотрим более сложный случай. От предыдущего отличается тем, что неравенство нестрогое:

Левая часть та же, что и в предыдущей задаче. Та же будет и картина знаков:

Может, и ответ будет тем же? Нет! Добавляется решение Это происходит потому, что при и левая, и правая части неравенства равны нулю - следовательно, эта точка является решением.

Ответ: .

В задаче на ЕГЭ по математике такая ситуация встречается часто. Здесь абитуриенты попадают в ловушку и теряют баллы. Будьте внимательны!

4. Что делать, если числитель или знаменатель не удается разложить на линейные множители? Рассмотрим такое неравенство:

Квадратный трехчлен на множители разложить нельзя: дискриминант отрицателен, корней нет. Но ведь это и хорошо! Это значит, что знак выражения при всех одинаков, а конкретно - положителен. Подробнее об этом можно прочитать в статье о свойствах квадратичной функции .

И теперь мы можем поделить обе части нашего неравенства на величину , положительную при всех . Придём к равносильному неравенству:

Которое легко решается методом интервалов.

Обратите внимание - мы поделили обе части неравенства на величину, о которой точно знали, что она положительна. Конечно, в общем случае не стоит умножать или делить неравенство на переменную величину, знак которой неизвестен.

5 . Рассмотрим еще одно неравенство, на вид совсем простое:

Так и хочется умножить его на . Но мы уже умные, и не будем этого делать. Ведь может быть как положительным, так и отрицательным. А мы знаем, что если обе части неравенства умножить на отрицательную величину - знак неравенства меняется.

Мы поступим по другому - соберём всё в одной части и приведём к общему знаменателю. В правой части останется нуль:

Class="tex" alt="\genfrac{}{}{}{0}{\displaystyle x-2}{\displaystyle x}>0">

И после этого - применим метод интервалов .

Решение неравенств онлайн

Перед тем как решать неравенства, необходимо хорошо усвоить как решаются уравнения .

Не важно каким является неравенство – строгим () или нестрогим (≤, ≥), первым делом приступают к решению уравнения, заменив знак неравенства на равенство (=).

Поясним что означает решить неравенство?

После изучения уравнений в голове у школьника складывается следующая картина: нужно найти такие значения переменной, при которых обе части уравнения принимают одинаковые значения. Другими словами, найти все точки, в которых выполняется равенство. Всё правильно!

Когда говорят о неравенствах, имеют в виду нахождение интервалов (отрезков), на которых выполняется неравенство. Если в неравенстве две переменные, то решением будут уже не интервалы, а какие-то площади на плоскости. Догадайтесь сами, что будет решением неравенства от трех переменных?

Как решать неравенства?

Универсальным способом решения неравенств считают метод интервалов (он же метод промежутков), который заключается в определении всех интервалов, в границах которых будет выполняться заданное неравенство.

Не вдаваясь в тип неравенства, в данном случае это не суть, требуется решить соответствующее уравнение и определить его корни с последующим обозначением этих решений на числовой оси.

Как правильно записывать решение неравенства?

Когда вы определили интервалы решений неравенства, нужно грамотно выписать само решение. Есть важный нюанс – входят ли границы интервалов в решение?

Тут всё просто. Если решение уравнения удовлетворяет ОДЗ и неравенство является нестрогим, то граница интервала входит в решение неравенства. В противном случае – нет.

Рассматривая каждый интервал, решением неравенства может оказаться сам интервал, либо полуинтервал (когда одна из его границ удовлетворяет неравенству), либо отрезок – интервал вместе с его границами.

Важный момент

Не думайте, что решением неравенства могут быть только интервалы, полуинтервалы и отрезки. Нет, в решение могут входить и отдельно взятые точки.

Например, у неравенства |x|≤0 всего одно решение – это точка 0.

А у неравенства |x|

Для чего нужен калькулятор неравенств?

Калькулятор неравенств выдает правильный итоговый ответ. При этом в большинстве случаев приводится иллюстрация числовой оси или плоскости. Видно, входят ли границы интервалов в решение или нет – точки отображаются закрашенными или проколотыми.

Благодаря онлайн калькулятору неравенств можно проверить правильно ли вы нашли корни уравнения, отметили их на числовой оси и проверили на интервалах (и границах) выполнение условия неравенства?

Если ваш ответ расходится с ответом калькулятора, то однозначно нужно перепроверить свое решение и выявить допущенную ошибку.