Уравнение линии на плоскости. Какие уравнения называются уравнениями в приведенной форме? Векторное уравнение линии

Рассмотрим соотношение вида F(x, y)=0 , связывающее переменные величины x и у . Равенство (1) будем называть уравнением с двумя переменными х, у, если это равенство справедливо не для всех пар чисел х и у . Примеры уравнений: 2х + 3у = 0, х 2 + у 2 – 25 = 0,

sin x + sin y – 1 = 0.

Если (1) справедливо для всех пар чисел х и у, то оно называется тождеством . Примеры тождеств: (х + у) 2 - х 2 - 2ху - у 2 = 0, (х + у)(х - у) - х 2 + у 2 = 0.

Уравнение (1) будем называть уравнением множества точек (х; у), если этому уравнению удовлетворяют координаты х и у любой точки множества и не удовлетворяют координаты никакой точки, не принадлежащие этому множеству.

Важным понятием аналитической геометрии является понятие уравнения линии. Пусть на плоскости заданы прямоугольная система координат и некоторая линия α.


Определение. Уравнение (1) называется уравнением линии α (в созданной системе координат), если этому уравнению удовлетворяют координаты х и у любой точки, лежащей на линии α , и не удовлетворяют координаты никакой точки, не лежащей на этой линии.

Если (1) является уравнением линии α, то будем говорить, что уравнение (1) определяет (задает) линию α.

Линия α может определятся не только уравнением вида (1), но и уравнением вида

F (P, φ) = 0 , содержащим полярные координаты.

  • уравнение прямой с угловым коэффициентом;

Пусть дана некоторая прямая, не перпендикулярная, оси ОХ . Назовем углом наклона данной прямой к оси ОХ угол α , на который нужно повернуть ось ОХ , чтобы положительное направление совпало с одним из направлений прямой. Тангенс угла наклона прямой к оси ОХ называют угловым коэффициентом этой прямой и обозначают буквой К .

К=tg α
(1)

Выведем уравнение данной прямой, если известны ее К и величина в отрезке ОВ , которой она отсекает на оси ОУ .

(2)
y=kx+b
Обозначим через М " точку плоскости (х; у). Если провести прямые BN и NM , параллельные осям, то образуются r BNM – прямоугольный. Т. MC C BM <=>, когда величины NM и BN удовлетворяют условию: . Но NM=CM-CN=CM-OB=y-b, BN=x => учитывая (1), получаем, что точка М (х; у) С на данной прямой <=>, когда ее координаты удовлетворяют уравнению: =>

Уравнение (2) называют уравнением прямой с угловым коэффициентом. Если K=0 , то прямая параллельна оси ОХ и ее уравнение имеет вид y = b.

  • уравнение прямой, проходящей через две точки;
(4)
Пусть даны две точки М 1 (х 1 ; у 1) и М 2 (х 2 ; у 2). Приняв в (3) точку М (х; у) за М 2 (х 2 ; у 2), получим у 2 -у 1 =k(х 2 - х 1). Определяя k из последнего равенства и подставляя его в уравнение (3), получаем искомое уравнение прямой: . Это уравнение, если у 1 ≠ у 2 , можно записать в виде:

Если у 1 = у 2 , то уравнение искомой прямой имеет вид у = у 1 . В этом случае прямая параллельна оси ОХ . Если х 1 = х 2 , то прямая, проходящая через точки М 1 и М 2 , параллельна оси ОУ , ее уравнение имеет вид х = х 1 .

  • уравнение прямой, проходящей через заданную точку с данным угловым коэффициентом;
(3)
Аx + Вy + С = 0
Теорема. В прямоугольной системе координат Оху любая прямая задается уравнением первой степени:

и, обратно, уравнение (5) при произвольных коэффициентах А, В, С (А и В ≠ 0 одновременно) определяет некоторую прямую в прямоугольной системе координат Оху.

Доказательство.

Сначала докажем первое утверждение. Если прямая не перпендикулярна Ох, то она определяется уравнением первой степени: у = kx + b , т.е. уравнением вида (5), где

A = k, B = -1 и C = b. Если прямая перпендикулярна Ох, то все ее точки имеют одинаковые абсциссы, равные величине α отрезка, отсекаемого прямой на оси Ох.

Уравнение этой прямой имеет вид х = α, т.е. также является уравнение первой степени вида (5), где А = 1, В = 0, С = - α. Тем самым доказано первое утверждение.

Докажем обратное утверждение. Пусть дано уравнение (5), причем хотя бы один из коэффициентов А и В ≠ 0 .

Если В ≠ 0 , то (5) можно записать в виде . Пологая , получаем уравнение у = kx + b , т.е. уравнение вида (2) которое определяет прямую.

Если В = 0 , то А ≠ 0 и (5) принимает вид . Обозначая через α, получаем

х = α , т.е. уравнение прямой перпендикулярное Ох.

Линии, определяемые в прямоугольной системе координат уравнением первой степени, называются линиями первого порядка.

Уравнение вида Ах + Ву + С = 0 является неполным, т.е. какой – то из коэффициентов равен нулю.

1) С = 0; Ах + Ву = 0 и определяет прямую, проходящую через начало координат.

2) В = 0 (А ≠ 0) ; уравнение Ах + С = 0 Оу.

3) А = 0 (В ≠ 0) ; Ву + С = 0 и определяет прямую параллельную Ох.

Уравнение (6) называется уравнением прямой «в отрезках». Числа а и b являются величинами отрезков, которые прямая отсекает на осях координат. Эта форма уравнения удобна для геометрического построения прямой.

  • нормальное уравнение прямой;

Аx + Вy + С = 0 – общее уравнение некоторой прямой, а (5) x cos α + y sin α – p = 0 (7)

ее нормальное уравнение.

Так как уравнение (5) и (7) определяют одну и ту же прямую, то (А 1х + В 1у + С 1 = 0 и

А 2х + В 2у + С 2 = 0 => ) коэффициенты этих уравнений пропорциональны. Это означает, что помножив все члены уравнения (5) на некоторый множитель М, мы получим уравнение МА х + МВ у + МС = 0 , совпадающее с уравнением (7) т.е.

МА = cos α, MB = sin α, MC = - P (8)

Чтобы найти множитель М, возведем первые два из этих равенств в квадрат и сложим:

М 2 (А 2 + В 2) = cos 2 α + sin 2 α = 1

1. Какое утверждение называется следствием? Докажи­те, что прямая, пересекающая одну из двух парал­лельных прямых, пересекает и другую.2.Докажите, что ес

ли две прямые параллельны третьей прямой, то они параллельны.3. Какая теорема называется обратной данной теореме?Приведите примеры теорем, обратных данным.4.Докажите, что при пересечении двух параллельных прямых секущей накрест лежащие углы равны.5.Докажите, что если прямая перпендикулярна к од­ной из двух параллельных прямых, то она перпенди­кулярна и к другой.6.Докажите, что при пересечении двух параллельных прямых секущей: а) соответственные углы равны; б) сумма односторонних углов равна 180°.

Помогите Пожалуйста с вопросами по геометрии(9 класс)! 2)Что значит разложить вектор по двум

данным векторам. 9)Что такое радиус-вектора точки?Докажите, что координаты точки равны соответствующим координатам векторов. 10)Выведите формулы для вычисления координат вектора по координатам его начала и конца. 11)Выведите формулы для вычисления координат вектора по координатам его концов. 12) Выведите формулу для вычисления длины вектора по его координатам. 13)Выведите формулу для вычисления расстояния между двумя точками по их координатам. 15)Какое уравнение называется уравнением данной линии?Приведите пример. 16)Выведите уравнение окружности данного радиуса с центром в данной точке.

1)Сформулируйте и докажите лемму о коллинеарных векторах.


3)Сформулируйте и докажите теорему о разложении вектора по двум неколлинеарным векторам.
4)Объясните, как вводится прямоугольная системы координат.
5)Что такое координатные векторы?
6)Сформулируйте и докажите утверждение о разложении произвольного вектора по координатным векторам.
7)Что такое координаты вектора?
8)Сформулируйте и докажите правила нахождения координат суммы и разности векторов, а также произведения вектора на число по заданным координатам векторов.
10)Выведите формулы для вычисления координат вектора по координатам его начала и конца.
11)Выведите формулы для вычисления координат вектора по координатам его концов.
12) Выведите формулу для вычисления длины вектора по его координатам.
13)Выведите формулу для вычисления расстояния между двумя точками по их координатам.
14)Приведите пример решения геометрической задачи с применением метода координат.
16)Выведите уравнение окружности данного радиуса с центром в данной точке.
17)Напишите уравнение окружности данного радиуса с центром в начале координат.
18)Выведите уравнение данной прямой в прямоугольной системе координат.
19)Напишите уравнение прямых, проходящих через данную точку M0 (X0: Y0) и параллельных осям координат.
20)Напишите уравнение осей координат.
21)Приведите примеры использования уравнений окружности и прямой при решении геометрических задач.

Пожалуйста очень надо! Желательно с рисунками(где надо)!

ГЕОМЕТРИЯ 9 КЛАСС.

1)Сформулируйте и докажите лемму о коллинеарных векторах.
2)Что значит разложить вектор по двум данным векторам.
3)Сформулируйте и докажите теорему о разложении вектора по двум неколлинеарным векторам.
4)Объясните, как вводится прямоугольная системы координат.
5)Что такое координатные векторы?
6)Сформулируйте и докажите утверждение о разложении произвольного вектора по координатным векторам.
7)Что такое координаты вектора?
8)Сформулируйте и докажите правила нахождения координат суммы и разности векторов, а также произведения вектора на число по заданным координатам векторов.
9)Что такое радиус-вектора точки? Докажите, что координаты точки равны соответствующим координатам векторов.
14)Приведите пример решения геометрической задачи с применением метода координат.
15)Какое уравнение называется уравнением данной линии? Приведите пример.
17)Напишите уравнение окружности данного радиуса с центром в начале координат.
18)Выведите уравнение данной прямой в прямоугольной системе координат.
19)Напишите уравнение прямых, проходящих через данную точку M0 (X0: Y0) и параллельных осям координат.
20)Напишите уравнение осей координат.
21)Приведите примеры использования уравнений окружности и прямой при решении геометрических задач.


Линию на плоскости можно задать при помощи двух уравнений

где х и у - координаты произвольной точки М (х ; у ), лежащей на данной линии, а t - переменная, называемая параметром .

Параметр t определяет положение точки (х ; у ) на плоскости.

Так, если

то значению параметра t = 2 соответствует на плоскости точка (4; 1), т.к. х = 2 + 2 = 4, y = 2 · 2 – 3 = 1.

Если параметр t изменяется, то точка на плоскости перемещается, описывая данную линию. Такой способ задания кривой называется параметрическим , а уравнения (1) - параметрическими уравнениями линии .

Рассмотрим примерыизвестных кривых, заданных в параметрическом виде.

1) Астроида:

где а > 0 – постоянная величина.

При а = 2 имеет вид:

Рис.4. Астроида

2) Циклоида: где а > 0 – постоянная.

При а = 2 имеет вид:

Рис.5. Циклоида

Векторное уравнение линии

Линию на плоскости можно задать векторным уравнением

где t – скалярный переменный параметр.

Каждому значению параметра t 0 соответствует определённый вектор плоскости. При изменении параметра t конец вектора опишет некоторую линию (рис. 6).

Векторному уравнению линии в системе координат Оху

соответствуют два скалярных уравнения (4), т.е. уравнения проекций

на оси координат векторного уравнения линии есть её параметрические уравнения.



Рис.6. Векторное уравнение линии

Векторное уравнение и параметрические уравнения линии имеют механический смысл. Если точка перемещается на плоскости, то указанные уравнения называются уравнениями движения , линия – траекторией точки, параметр t - время .

Скачать с Depositfiles

АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ

Лекция № 7. Тема 1 : Линии на плоскости и их уравнения

1.1. Линии и их уравнения в декартовой системе координат

В аналитической геометрии линии на плоскости рассматриваются как геометрическое место точек (г.м.т.), обладающих одинаковым свойством, общим для всех точек линии.

Определение. Уравнение линии
– это уравнение с двумя переменными
х и у , которому удовлетворяют координаты любой точки линии и не удовлетворяют координаты никакой другой точки, не лежащей на данной линии.

Верно и обратное, т.е. любое уравнение у

вида , вообще говоря, в декартовой

системе координат (ДСК) определяет линию

как г.м.т., координаты которых удовлетворяют

этому уравнению. О х

Замечание 1. Не всякое уравнение вида определяет линию. Например, для уравнения
не существует точек, координаты, которых удовлетворяли бы этому уравнению. Такие случаи в дальнейшем рассматривать не будем.
Это случай так называемых мнимых линий.

Пример 1. Составить уравнение окружности радиуса R с центром в точке
.

Для любой точки , лежащей у М

на окружности, в силу определения R

окружности как г.м.т., равноудаленных

от точки , получаем уравнение х

1.2. Параметрические уравнения линий

Существует ещё один способ задавать линию на плоскости при помощи уравнений, которые называются параметрическими :

Пример 1. Линия задана параметрическими уравнениями

Требуется получить уравнение этой линии в ДСК.

Исключим параметр t . Для этого возведём обе части этих уравнений в квадрат и сложим

Пример 2. Линия задана параметрическими уравнениями


а

Требуется получить уравнение

этой линии в ДСК. — а а

Поступим аналогично, тогда получим

а

Замечание 2. Следует отметить, что параметром t в механике явля-ется время.

1.3. Уравнение линии в полярной системе координат

ДСК является не единственным способом определять положение точки и, следовательно, задавать уравнение линии. На плоскости часто целесо-образно использовать так называемую полярную систему координат (ПСК).

ПСК будет определена, если задать точку О – полюс и луч ОР, исхо-дящий из этой точки, который называется полярной осью. Тогда положение любой точки определяется двумя числами: полярным радиусом
и полярным углом – угол между

полярной осью и полярным радиусом.

Положительное направление отсчета

полярного угла от полярной оси

считается против часовой стрелки.

Для всех точек плоскости
, О Р

а для однозначности полярного угла считается
.

Если начало ДСК совместить с

полюсом, а ось Ох направить по

полярной оси, то легко убедиться у

в связи между полярными и

декартовыми координатами:


О х Р

Обратно,

(1)

Если уравнение линии в ДСК имеет вид , то в ПСК — Тогда из этого уравнения можно получить урав-нение в виде

Пример 3. Составить уравнение окружности в ПСК, если центр окружности находится в полюсе.

Используя формулы перехода (1) от ДСК к ПСК, получим

Пример 4. Составить уравнение окружности,

если полюс на окружности, а полярная ось у

проходит через диаметр.

Поступим аналогично

О 2 R х

R

Данное уравнение можно получить и

из геометрических представлений (см. рис.).

Пример 5. Построить график линии

Перейдём к ПСК. Уравнение

примет вид
О

График линии построим с а

учётом его симметрии и ОДЗ

функции:

Данная линия называется лемнискатой Бернулли .

1.4. Преобразование системы координат.

Уравнение линии в новой системе координат

1. Параллельный перенос ДСК. у

Рассмотрим две ДСК, имеющие М

одинаковое направление осей, но

различные начала координат.

В системе координат Оху точка

относительно системы
О х

имеет координаты
. Тогда имеем

и

В координатной форме полученное векторное равенство имеет вид

или
. (2)

Формулы (2) представляют собой формулы перехода от «старой» системы координат Оху к «новой» системе координат и наоборот.

Пример 5. Получить уравнение окружности выполнив параллельный перенос системы координат в центр окружности.

Из формул (2) следует
у О

Цель: Рассмотреть понятие линии на плоскости, привести примеры. Основываясь на определение линии, ввести понятие уравнения прямой на плоскости. Рассмотреть виды прямой, привести примеры и способы задания прямой. Закрепить умение переводить уравнение прямой из общего вида в уравнение прямой «в отрезках», с угловым коэффициентом.

  1. Уравнение линии на плоскости.
  2. Уравнение прямой на плоскости. Виды уравнений.
  3. Способы задания прямой.

1. Пусть х и у – две произвольные переменные.

Определение : Соотношение вида F(x,y)=0 называется уравнением , если оно справедливо не для всяких пар чисел х и у.

Пример : 2х + 7у – 1 = 0 , х 2 + y 2 – 25 = 0.

Если равенство F(x,y)=0 выполняется для любых х, у, то, следовательно, F(x,y) = 0 – тождество.

Пример: (х + у) 2 - х 2 - 2ху - у 2 = 0

Говорят, что числа х 0 и у 0 удовлетворяют уравнению , если при их подстановке в это уравнение оно обращается в верное равенство.

Важнейшим понятием аналитической геометрии является понятие уравнения линии.

Определение : Уравнением данной линии называется уравнение F(x,y)=0, которому удовлетворяют координаты всех точек, лежащих на этой линии, и не удовлетворяют координаты никакой из точек, не лежащих на этой линии.

Линия, определяемая уравнением y = f(x), называется графиком функции f(x). Переменные х и у – называются текущими координатами, т. к. являются координатами переменной точки.

Несколько примеров определения линий.

1) х – у = 0 => х = у. Это уравнение определяет прямую:

2) х 2 - у 2 = 0 => (х-у)(х+у) = 0 => точки должны удовлетворять либо уравнению х - у = 0, либо уравнению х + у = 0, что соответствует на плоскости паре пересекающихся прямых, являющихся биссектрисами координатных углов:

3) х 2 + у 2 = 0. Этому уравнению удовлетворяет только одна точка О(0,0).

2. Определение: Любая прямая на плоскости может быть задана уравнением первого порядка

Ах + Ву + С = 0,

причем постоянные А, В не равны нулю одновременно, т.е. А 2 + В 2 ¹ 0. Это уравнение первого порядка называют общим уравнением прямой.

В зависимости от значений постоянных А,В и С возможны следующие частные случаи:

C = 0, А ¹ 0, В ¹ 0 – прямая проходит через начало координат

А = 0, В ¹ 0, С ¹ 0 { By + C = 0}- прямая параллельна оси Ох

В = 0, А ¹ 0, С ¹ 0 { Ax + C = 0} – прямая параллельна оси Оу

В = С = 0, А ¹ 0 – прямая совпадает с осью Оу

А = С = 0, В ¹ 0 – прямая совпадает с осью Ох

Уравнение прямой может быть представлено в различном виде в зависимости от каких–либо заданных начальных условий.

Уравнение прямой с угловым коэффициентом.



Если общее уравнение прямой Ах + Ву + С = 0 привести к виду:

и обозначить , то полученное уравнение называется уравнением прямой с угловым коэффициентом k .

Уравнение прямой в отрезках.

Если в общем уравнении прямой Ах + Ву + С = 0 С ¹ 0, то, разделив на –С, получим: или , где

Геометрический смысл коэффициентов в том, что коэффициент а является координатой точки пересечения прямой с осью Ох, а b – координатой точки пересечения прямой с осью Оу.

Нормальное уравнение прямой.

Если обе части уравнения Ах + Ву + С = 0 разделить на число , которое называется нормирующем множителем , то получим

xcosj + ysinj - p = 0 –нормальное уравнение прямой.

Знак ± нормирующего множителя надо выбирать так, чтобы m×С < 0.

р – длина перпендикуляра, опущенного из начала координат на прямую, а j - угол, образованный этим перпендикуляром с положительным направлением оси Ох.

3. Уравнение прямой по точке и угловому коэффициенту.

Пусть угловой коэффициент прямой равен k, прямая проходит через точку М(х 0 , у 0). Тогда уравнение прямой находится по формуле: у – у 0 = k(x – x 0)

Уравнение прямой, проходящей через две точки.

Пусть в пространстве заданы две точки M 1 (x 1 , y 1 , z 1) и M 2 (x 2, y 2 , z 2), тогда уравнение прямой, проходящей через эти точки:

Если какой- либо из знаменателей равен нулю, следует приравнять нулю соответствующий числитель.

На плоскости записанное выше уравнение прямой упрощается:

если х 1 ¹ х 2 и х = х 1 , еслих 1 = х 2 .

Дробь = k называется угловым коэффициентом прямой.