Начертательная геом проецирование точки. Урок черчения "построение проекций точек на поверхности предмета"

Аппарат проецирования

Аппарат проецирования (рис. 1) включает в себя три плоскости проекций:

π 1 – горизонтальная плоскость проекций;

π 2 – фронтальная плоскость проекций;

π 3 – профильная плоскость проекций.

Плоскости проекций располагаются взаимно перпендикулярно (π 1 ^ π 2 ^ π 3 ), а их линии пересечения образуют оси:

Пересечение плоскостей π 1 и π 2 образуют ось (π 1 π 2 = );

Пересечение плоскостей π 1 и π 3 образуют ось 0Y (π 1 π 3 = 0Y );

Пересечение плоскостей π 2 и π 3 образуют ось 0Z (π 2 π 3 = 0Z ).

Точка пересечения осей (ОХ∩OY∩OZ=0), считается точкой начала отсчета (точка 0).

Так как плоскости и оси взаимно перпендикулярны, то такой аппарат аналогичен декартовой системе координат.

Плоскости проекций все пространство делят на восемь октантов (на рис. 1 они обозначены римскими цифрами). Плоскости проекций считаются непрозрачными, а зритель всегда находится в I -ом октанте.

Проецирование ортогональное с центрами проецирования S 1 , S 2 и S 3 соответственно для горизонтальной, фронтальной и профильной плоскостей проекций.

А .

Из центров проецирования S 1 , S 2 и S 3 выходят проецирующие лучи l 1 , l 2 и l 3 А

- А 1 А ;

- А 2 – фронтальная проекция точки А ;

- А 3 – профильная проекция точки А .

Точка в пространстве характеризуется своими координатами A (x,y,z ). Точки A x , A y и A z соответственно на осях 0X , 0Y и 0Z показывают координаты x, y и z точки А . На рис. 1 даны все необходимые обозначения и показаны связи между точкой А пространства, её проекциями и координатами.

Эпюр точки

Чтобы получить эпюр точки А (рис. 2), в аппарате проецирования (рис. 1) плоскость π 1 А 1 π 2 . Затем плоскость π 3 с проекцией точки А 3 , вращают против часовой стрелки вокруг оси 0Z , до совмещения её с плоскостью π 2 . Направление поворотов плоскостей π 2 и π 3 показано на рис. 1 стрелками. При этом прямые А 1 А х и А 2 А х перпендикуляре А 1 А 2 , а прямые А 2 А х и А 3 А х станут располагаться на общем к оси 0Z перпендикуляре А 2 А 3 . Эти прямые в дальнейшем будем называть соответственно вертикальной и горизонтальной линиями связей.

Следует отметить, что при переходе от аппарата проецирования к эпюру проектируемый объект исчезает, но вся информация о его форме, геометрических размерах и месте его положения в пространстве сохраняются.



А (x A , y A , z A x A , y A и z A в следующей последовательности (рис. 2). Эта последовательность называется методикой построения эпюра точки.

1. Ортогонально вычерчиваются оси OX, OY и OZ.

2. На оси OX x A точки А и получают положение точки А х .

3. Через точку А х перпендикулярно оси OX

А х по направлению оси OY откладывается численное значение координаты y A точки А А 1 на эпюре.

А х по направлению оси OZ откладывается численное значение координаты z A точки А А 2 на эпюре.

6. Через точку А 2 параллельно оси OX проводится горизонтальная линия связи. Пересечение этой линии и оси OZ даст положение точки А z .

7. На горизонтальной линии связи от точки А z по направлению оси OY откладывается численное значение координаты y A точки А и определяется положение профильной проекции точки А 3 на эпюре.

Характеристика точек

Все точки пространства подразделяются на точки частного и общего положений.

Точки частного положения. Точки, принадлежащие аппарату проецирования, называются точками частного положения. К ним относятся точки, принадлежащие плоскостям проекций, осям, началу координат и центрам проецирования. Характерными признаками точек частного положения являются:

Метаматематический – одна, две или все численные значения координат равны нулю и (или) бесконечности;

На эпюре – две или все проекции точки располагаются на осях и (или) располагаются в бесконечности.



Точки общего положения. К точкам общего положения относятся точки, не принадлежащие аппарату проецирования. Например, точка А на рис. 1 и 2.

В общем случае численные значения координат точки характеризует ее удаление от плоскости проекций: координата х от плоскости π 3 ; координата y от плоскости π 2 ; координата z от плоскости π 1 . Следует отметить, что знаки при численных значениях координат указывают на направление удаления точки от плоскостей проекций. В зависимости от сочетания знаков при численных значениях координат точки зависит в каком из октанов она находится.

Метод двух изображений

На практике, кроме метода полного проецирования используют метод двух изображений. Он отличается тем, что в этом методе исключается третья проекция объекта. Для получения аппарата проецирования метода двух изображений из аппарата полного проецирования исключается профильная плоскость проекций с ее центром проецирования (рис. 3). Кроме того, на оси назначается начало отсчета (точка 0 ) и из него перпендикулярно оси в плоскостях проекций π 1 и π 2 проводят оси 0Y и 0Z соответственно.

В этом аппарате все пространство делится на четыре квадранта. На рис. 3 они обозначены римскими цыфрами.

Плоскости проекций считаются непрозрачными, а зритель всегда находится в I -ом квадранте.

Рассмотрим работу аппарата на примере проецирования точки А .

Из центров проецирования S 1 и S 2 выходят проецирующие лучи l 1 и l 2 . Эти лучи проходят через точку А и пересекаясь с плоскостями проекций образуют ее проекции:

- А 1 – горизонтальная проекция точки А ;

- А 2 – фронтальная проекция точки А .

Чтобы получить эпюр точки А (рис. 4), в аппарате проецирования (рис. 3) плоскость π 1 с полученной проекцией точки А 1 вращают по часовой стрелке вокруг оси , до совмещения её с плоскостью π 2 . Направление поворота плоскости π 1 показана на рис. 3 стрелками. При этом на эпюре точки полученной методом двух изображений остается только одна вертикальная линия связи А 1 А 2 .

На практике построение эпюра точки А (x A , y A , z A ) осуществляется по численным значениям ее координат x A , y A и z A в следующей последовательности (рис. 4).

1. Вычерчивается ось OX и назначается начало отсчета (точка 0 ).

2. На оси OX откладывается численное значение координаты x A точки А и получают положение точки А х .

3. Через точку А х перпендикулярно оси OX проводится вертикальная линия связи.

4. На вертикальной линии связи от точки А х по направлению оси OY откладывается численное значение координаты y A точки А и определяется положение горизонтальной проекции точки А 1 OY не вычерчивается, а предполагается, что ее положительные значения располагаются ниже оси OX , а отрицательные выше.

5. На вертикальной линии связи от точки А х по направлению оси OZ откладывается численное значение координаты z A точки А и определяется положение фронтальной проекции точки А 2 на эпюре. Следует отметить, что на эпюре ось OZ не вычерчивается, а предполагается, что ее положительные значения располагаются выше оси OX , а отрицательные ниже.

Конкурирующие точки

Точки на одном проецирующем луче называются конкурирующими. Они в направлении проецирующего луча имеют общую для них проекцию, т.е. их проекции тождественно совпадают. Характерным признаком конкурирующих точек на эпюре является тождественное совпадение их одноименных проекций. Конкуренция заключается в видимости этих проекций относительно наблюдателя. Говоря другими словами, в пространстве для наблюдателя одна из точек видима, другая – нет. И, соответственно, на чертеже: одна из проекций конкурирующих точек видима, а проекция другой точки – невидима.

На пространственной модели проецирования (рис. 5) из двух конкурирующих точек А и В видима точка А по двум взаимно дополняющим признакам. Судя по цепочке S 1 →А→В точка А ближе к наблюдателю, чем точка В . И, соответственно, – дальше от плоскости проекций π 1 (т.е. z A > z A ).

Рис. 5 Рис.6

Если видима сама точка A , то видима и её проекция A 1 . По отношению к совпадающей с ней проекцией B 1 . Для наглядности и при необходимости на эпюре невидимые проекции точек принято заключать в скобки.

Уберем на модели точки А и В . Останутся их совпадающие проекции на плоскости π 1 и раздельные проекции – на π 2 . Условно оставим и фронтальную проекцию наблюдателя (⇩), находящегося в центре проецирования S 1 . Тогда по цепочке изображений ⇩ → A 2 B 2 можно будет судить о том, что z A > z B и что видима и сама точка А и её проекция А 1 .

Аналогично рассмотрим конкурирующие точки С и D по видимости относительно плоскости π 2 . Поскольку общий проецирующий луч этих точек l 2 параллелен оси 0Y , то признак видимости конкурирующих точек С и D определяется неравенством y C > y D . Следовательно, что точка D закрыта точкой С и соответственно проекция точки D 2 будет закрыта проекцией точки С 2 на плоскости π 2 .

Рассмотрим, как определяется видимость конкурирующих точек на комплексном чертеже (рис. 6).

Судя по совпадающим проекциям А 1 В 1 сами точки А и В находятся на одном проецирующем луче, параллельном оси 0Z . Значит сравнению подлежат координаты z A и z B этих точек. Для этого используем фронтальную плоскость проекций с раздельными изображениями точек. В данном случае z A > z B . Из этого следует, что видима проекция А 1 .

Точки C и D на рассматриваемом комплексном чертеже (рис. 6) так же находятся на одном проецирующем луче, но только параллельном оси 0Y . Поэтому из сравнения y C > y D делаем вывод, что видима проекция С 2 .

Общее правило . Видимость для совпадающих проекций конкурирующих точек определяется сравнением координат этих точек в направлении общего проецирующего луча. Видима та проекция точки, у которой эта координата больше. При этом сравнение координат ведется на плоскости проекций с раздельными изображениями точек.

ПРОЕКЦИИ ТОЧКИ.

ОРТОГОНАЛЬНАЯ СИСТЕМА ДВУХ ПЛОСКОСТЕЙ ПРОЕКЦИЙ.

Сущность метода ортогонального проецирования заключается в том, что предмет проецируется на две взаимно перпендикулярные плоскости лучами, ортогональными (перпендикулярными) к этим плоскостям..

Одну из плоскостей проекций H располагают горизонтально, а вторую V — вертикально. Плоскость H называют горизонтальной плоскостью проекций, V — фронтальной. Плоскости H и V бесконечны и непрозрачны. Линия пересечения плоскостей проекций называется осью координат и обозначается OX . Плоскости проекций делят пространство на четыре двугранных угла — четверти.

Рассматривая ортогональные проекции, предполагают, что наблюдатель находится в первой четверти на бесконечно большом расстоянии от плоскостей проекций. Так как эти плоскости непрозрачны, то видимыми для наблюдателя будут только те точки, линии и фигуры, которые расположены в пределах той же первой четверти.

При построении проекций необходимо помнить, что ортогональной проекцией точки на плоскость называется основание перпендикуляра, опущенного из данной точки на эту плоскость.

На рисунке показаны точка А и ее ортогональные проекции а 1 и а 2 .

Точку а 1 называют горизонтальной проекцией точки А, точку а 2 — ее фронтальной проекцией . Каждая из них является основанием перпендикуляра, опущенного из точки А соответственно на плоскости H и V .

Можно доказать, что проекции точки всегда расположены на прямых, перпенди кулярных оси ОХ и пересекающих эту ось в одной и той же точке. Действительно, проецирующие лучи А а 1 и А а 2 определяют плоскость, перпендикулярную плоскостям проекций и линии их пересечения — оси ОХ. Эта плоскость пересекает H и V по прямым а 1 а x и а 1 а x , которые образуют с осью OX и друг с другом прямые углы с вершиной в точке а x .

Справедливо и обратное, т. е. если на плоскостях проекций даны точки a 1 и a 2 , расположенные на прямых, пересекающих ось OX в данной точке под прямым углом, то они являются проекциями некоторой точки А. Эта точка определяется пересечением перпендикуляров, восставленных из точек a 1 и a 2 к плоскостям H и V .

Заметим, что положение плоскостей проекций в пространстве может оказаться иным. Например, обе плоскости, будучи взаимно перпендикулярными, могут быть вертикальными Но и в этом случае доказанное выше предположение об ориентации разноименных проекций точек относительно оси остается справедливым.

Чтобы получить плоский чертеж, состоящий из указанных выше проекций, плоскость H совмещают вращением вокруг оси OX с плоскостью V , как показано стрелками на рисунке. В результате передняя полуплоскость H будет совмещена с нижней полуплоскостью V , а задняя полуплоскость H — с верхней полуплоскостью V .

Проекционный чертеж, на котором плоскости проекций со всем тем, что на них изображено, совмещены определенным образом одна с другой, называется эпюром (от франц. еpure - чертеж). На рисунке показан эпюр точки А.

При таком способе совмещения плоскостей H и V проекции a 1 и a 2 окажутся расположенными на одном перпендикуляре к оси OX . При этом расстояние a 1 a x от горизонтальной проекции точки до оси OX А до плоскости V , а расстояние a 2 a x от фронтальной проекции точки до оси OX равно расстоянию от самой точки А до плоскости H .

Прямые линии, соединяющие разноименные проекции точки на эпюре, условимся называть линиями проекционной связи .

Положение проекций точек на эпюре зависит от того, в какой четверти находится данная точка. Так, если точка В расположена во второй четверти, то после совмещения плоскостей обе проекции окажутся лежащими над осью OX.

Если точка С находится в третьей четверти, то ее горизонтальная проекция после совмещения плоскостей окажется над осью, а фронтальная — под осью OX . Наконец, если точка D расположена в четвертой четверти, то обе проекции ее окажутся под осью OX . На рисунке показаны точки М и N , лежащие на плоскостях проекций. При таком положении точка совпадает с одной из своих проекций, другая же проекция ее оказывается лежащей на оси OX . Эта особенность отражена и в обозначении: около той проекции, с которой совпадает сама точка, пишется заглавная буква без индекса.

Следует отметить и тот случай, когда обе проекции точки совпадают. Так будет, если точка находится во второй или четвертой четверти на одинаковом расстоянии от плоскостей проекций. Обе проекции совмещаются с самой точкой, если последняя расположена на оси OX .

ОРТОГОНАЛЬНАЯ СИСТЕМА ТРЕХ ПЛОСКОСТЕЙ ПРОЕКЦИЙ.

Выше было показано, что две проекции точки определяют ее положение в пространстве. Так как каждая фигура или тело представляет собой совокупность точек, то можно утверждать, что и две ортогональные проекции предмета (при наличии буквенных обозначений) вполне определяют его форму.

Однако в практике изображения строительных конструкций, машин и различных инженерных сооружений возникает необходимость в создании дополнительных проекций. Поступают так с единственной целью — сделать проекционный чертеж более ясным, удобочитаемым.

Модель трех плоскостей проекций показана на рисунке. Третья плоскость, перпендикулярная и H и V , обозначается буквой W и называется профильной.

Проекции точек на эту плоскость будут также именоваться профильными, а обозначают их заглавными буквами или цифрами с индексом 3 (a з, b з, c з, ... 1з, 2з, 3 3 ...).

Плоскости проекций, попарно пересекаясь, определяют три оси: О X , О Y и О Z , которые можно рассматривать как систему прямоугольных декартовых координат в пространстве с началом в точке О. Система знаков, указанная на рисунке, соответствует «правой системе» координат.

Три плоскости проекций делят пространство на восемь трехгранных углов — это так называемые октанты . Нумерация октантов дана на рисунке.

Для получения эпюра плоскости H и W вращают, как показано на рисунке, до совмещения с плоскостью V . В результате вращения передняя полуплоскость H оказывается совмещенной с нижней полуплоскостью V , а задняя полуплоскость H — с верхней полуплоскостью V . При повороте на 90° вокруг оси О Z передняя полуплоскость W совместится с правой полуплоскостью V , а задняя полуплоскость W — с левой полуплоскостью V .

Окончательный вид всех совмещенных плоскостей проекций дан на рисунке. На этом чертеже оси О X и О Z , лежащие в не подвижной плоскости V , изображены только один раз, а ось О Y показана дважды. Объясняется это тем, что, вращаясь с плоскостью H , ось О Y на эпюре совмещается с осью О Z , а вращаясь вместе с плоскостью W , эта же ось совмещается с осью О X .

В дальнейшем при обозначении осей на эпюре отрицательные полуоси (— О X , О Y , О Z ) указываться не будут.

ТРИ КООРДИНАТЫ И ТРИ ПРОЕКЦИИ ТОЧКИ И ЕЕ РАДИУСА-ВЕКТОРА.

Координатами называют числа, которые ставят в соответствие точке для определе ния ее положения в пространстве или на поверхности.

В трехмерном пространстве положение точки устанавливают с помощью прямоугольных декартовых координат х, у и z .

Координату х называют абсциссой , у ординатой и z аппликатой. Абсцисса х определяет расстояние от данной точки до плоскости W , ордината у — до плоскости V и аппликата z - до плоскости H . Приняв для отсчета координат точки систему, показанную на рисунке, составим таблицу знаков координат во всех восьми октантах. Какая-либо точка пространства А, заданная координатами, будет обозначаться так: A (х, у, z ).

Если х = 5, y = 4 и z = 6, то запись примет следующий вид А (5, 4, 6). Эта точка А, все координаты которой положительны, находится в первом октанте

Координаты точки А являются вместе с тем и координатами ее радиуса-вектора

ОА по отношению к началу координат. Если i , j , k — единичные векторы, направленные соответственно вдоль координатных осей х, у, z (рисунок), то

ОА = О A x i +ОА y j + ОА z k , где ОА Х, ОА У, ОА г — координаты вектора ОА

Построение изображения самой точки и ее проекций на пространственной модели (рисунок) рекомендуется осуществлять с помощью координатного прямоугольного параллелепипеда. Прежде всего на осях координат от точки О откладывают отрезки, соответственно равные 5, 4 и 6 единицам длины. На этих отрезках a x , О a y , О a z ), как на ребрах, строят прямоугольный параллелепипед. Вершина его, противоположная началу координат, и будет определять заданную точку А. Легко заметить, что для определения точки А достаточно построить только три ребра параллелепипеда, например О a x , a x a 1 и a 1 А или О a y , a y a 1 и a 1 A и т. д. Эти ребра образуют координатную ломаную линию, длина каждого звена которой определяется соответствующей координатой точки.

Однако построение параллелепипеда позволяет определить не только точку А, но и все три ее ортогональные проекции.

Лучами, проецирующими точку на плоскости H , V , W являются те три ребра параллелепипеда, которые пересекаются в точке А.

Каждая из ортогональных проекций точки А, будучи расположенной на плоскости, определяется только двумя координатами.

Так, горизонтальная проекция a 1 определяется координатами х и у, фронтальная проекция a 2 — координатами х и z , профильная проекция a 3 координатами у и z . Но две любые проекции определяются тремя координатами. Вот почему задание точки двумя проекциями равносильно заданию точки тремя координатами.

На эпюре (рисунок), где все плоскости проекций совмещены, проекции a 1 и a 2 окажутся на одном перпендикуляре к оси О X , а проекции a 2 и a 3 на одном перпендикуляре к оси OZ .

Что касается проекций a 1 и a 3 , то и они связаны прямыми a 1 a y и a 3 a y , перпендикулярными оси О Y . Но так как эта ось на эпюре занимает два положения, то отрезок a 1 a y не может быть продолжением отрезка a 3 a y .

Построение проекций точки А (5, 4, 6) на эпюре по заданным координатам выполняют в такой последовательности: прежде всего на оси абсцисс от начала координат откладывают отрезок О a x = х (в нашем случае х = 5), затем через точку a x проводят перпендикуляр к оси О X , на котором с учетом знаков откладываем отрезки a x a 1 = у (получаем a 1 ) и a x a 2 = z (получаем a 2 ). Остается построить профильную проекцию точки a 3 . Так как профильная и фронтальная проекции точки должны быть расположены на одном перпендикуляре к оси OZ , то через a 3 проводят прямую a 2 a z ^ OZ .

Наконец, возникает последний вопрос: на каком расстоянии от оси О Z должна находиться a 3 ?

Рассматривая координатный параллелепипед (см. рисунок), ребра которого a z a 3 = Oa y = a x a 1 = y заключаем, что искомое расстояние a z a 3 равно у. Отрезок a z a 3 откладывают вправо от оси ОZ, если у>0, и влево, если у

Проследим за тем, какие изменения произойдут на эпюре, когда точка начнет менять свое положение в пространстве.

Пусть, например, точка А (5, 4, 6) станет перемещаться по прямой, перпендикулярной плоскости V . При таком движении будет меняться только одна координата у, показывающая расстояние от точки до плоскости V . Постоянными будут оставаться координаты х и z , а проекция точки, определяемая этими координатами, т. е. a 2 не изменит своего положения.

Что касается проекций a 1 и a 3 , то первая начнет приближаться к оси О X , вторая — к оси О Z . На рисунках новому положению точки соответствуют обозначения a 1 (a 1 1 a 2 1 a 3 1 ). В тот момент, когда точка окажется на плоскости V (y = 0), две из трех проекций (a 1 2 и a 3 2 ) будут лежать на осях.

Переместившись из I октанта во II , точка начнет удаляться от плоскости V , координата у станет отрицательной, ее абсолютная величина будет возрастать. Горизонтальная проекция этой точки, будучи расположенной на задней полуплоскости H , на эпюре окажется выше оси О X , а профильная проекция, находясь на задней полуплоскости W , на эпюре будет слева от оси О Z . Как всегда, отрезок a z a 3 3 = у.

На последующих эпюрах мы не станем обозначать буквами точки пересечения координатных осей с линиями проекционной связи. Это в какой-то мере упростит чертеж.

В дальнейшем встретятся эпюры и без координатных осей. Так поступают на практике при изображении предметов, когда существенно только само изображе ние предмета, а не его положение относи тельно плоскостей проекций.

Плоскости проекций в этом случае определены с точностью лишь до параллельного переноса (рисунок). Их обычно перемещают параллельно самим себе с таким расчетом, чтобы все точки предмета оказались над плоскостью H и перед плоскостью V . Так как положение оси X 12 оказывается неопределенным, то образование эпюра в этом случае не нужно связывать с вращением плоскостей вокруг координатной оси. При переходе к эпюру плоскости H и V совмещают так, чтобы разноименные проекции точек были расположены на вертикальных прямых.

Безосный эпюр точек А и В (рисунок) не определяет их положения в пространстве, но позволяет судить об их относительной ориентировке. Так, отрезок △x характеризует смещение точки А по отношению к точке В в направлении, параллельном плоскостям H и V. Иными словами, △x указывает, насколько точка А расположена левее точки В. Относительное смещение точки в направлении, перпендикулярном плоскости V, определяется отрезком △y, т. е. точка А в нашем примере ближе к наблюдателю, чем точка В, на расстояние, равное △y.

Наконец, отрезок △z показывает превышение точки А над точкой В.

Сторонники безосного изучения курса начертательной геометрии справедливо указывают, что при решении многих задач можно обходиться без осей координат. Однако полный отказ от них нельзя признать целесообразным. Начертательная геометрия призвана подготовить будущего инженера не только к грамотному выполнению чертежей, но и к решению различных технических задач, среди которых не последнее место занимают задачи пространственной статики и механики. А для этого необходимо воспитывать умение ориентировать тот или иной предмет относительно декартовых осей координат. Указанные навыки будут необходимы и при изучении таких разделов начертательной геометрии, как перспектива и аксонометрия. Поэтому на ряде эпюров этой книги мы сохраняем изображения координатных осей. Такие чертежи определяют не только форму предмета, но и его расположение относительно плоскостей проекций.

Точка в пространстве определяется любыми двумя своими проекциями. При необходимости построения третьей проекции по двум заданным необходимо воспользоваться соответствием отрезков линий проекционной связи, полученных при определении расстояний от точки до плоскости проекций (см. рис. 2.27 и рис. 2.28).

Примеры решения задач в I октанте

Дано А 1 ; А 2 Построить А 3
Дано А 2 ; А 3 Построить А 1
Дано А 1 ; А 3 Построить А 2

Рассмотрим алгоритм построения точки А (табл. 2.5)

Таблица 2.5

Алгоритм построения точки А
по заданным координатам А (x = 5, y = 20, z = -9)

В следующих главах мы будем рассматривать образы: прямые и плоскости только в первой четверти. Хотя все рассматриваемые способы можно применить в любой четверти.

Выводы

Таким образом, на основании теории Г. Монжа, можно преобразовать пространственное изображение образа (точки) в плоскостное.

Эта теория основывается на следующих положениях:

1. Все пространство делится на 4 четверти с помощью двух взаимно перпендикулярных плоскостей p 1 и p 2 , либо на 8 октантов при добавлении третьей взаимно-перпендикулярной плоскости p 3 .

2. Изображение пространственного образа на эти плоскости получается с помощью прямоугольного (ортогонального) проецирования.

3. Для преобразования пространственного изображения в плоскостное считают, что плоскость p 2 – неподвижна, а плоскость p 1 вращается вокруг оси x так, что положительная полуплоскость p 1 совмещается с отрицательной полуплоскостью p 2 , отрицательная часть p 1 – с положительной частью p 2 .

4. Плоскость p 3 вращается вокруг оси z (линии пересечения плоскостей) до совмещения с плоскостью p 2 (см. рис. 2.31).

Изображения, получающиеся на плоскостях p 1 , p 2 и p 3 при прямоугольном проецировании образов, называются проекциями.

Плоскости p 1 , p 2 и p 3 вместе с изображенными на них проекциями, образуют плоскостной комплексный чертеж или эпюр.

Линии, соединяющие проекции образа ^ осям x , y , z , называются линиями проекционной связи.

Для более точного определения образов в пространстве может быть применена система трех взаимно перпендикулярных плоскостей p 1 , p 2 , p 3 .

В зависимости от условия задачи можно выбрать для изображения либо систему p 1 , p 2 , либо p 1 , p 2 , p 3 .

Систему плоскостей p 1 , p 2 , p 3 можно соединить с системой декартовых координат, что дает возможность задавать объекты не только графическим или (вербальным) образом, но и аналитическим (с помощью цифр).

Такой способ изображения образов, в частности точки, дает возможность решать такие позиционные задачи, как:

  • расположение точки относительно плоскостей проекций (общее положение, принадлежность плоскости, оси);
  • положение точки в четвертях (в какой четверти расположена точка);
  • положение точек относительно друг друга, (выше, ниже, ближе, дальше относительно плоскостей проекций и зрителя);
  • положение проекций точки относительно плоскостей проекций (равноудаление, ближе, дальше).

Метрические задачи:

  • равноудаленность проекции от плоскостей проекций;
  • отношение удаления проекции от плоскостей проекций (в 2–3 раза, больше, меньше);
  • определение расстояния точки от плоскостей проекций (при введении системы координат).

Вопросы для самоанализа

1. Линией пересечения каких плоскостей является ось z ?

2. Линией пересечения каких плоскостей является ось y ?

3. Как располагается линия проекционной связи фронтальной и профильной проекции точки? Покажите.

4. Какими координатами определяется положение проекции точки: горизонтальной, фронтальной, профильной?

5. В какой четверти располагается точка F (10; –40; –20)? От какой плоскости проекций точка F удалена дальше всего?

6. Расстоянием от какой проекции до какой оси определяется удаление точки от плоскости p 1 ? Какой координатой точки является это расстояние?

Проецирование (лат. Projicio – бросаю вперёд) – процесс получения изображения предмета (пространственного объекта) на какой-либо поверхности с помощью световых или зрительных лучей (лучей, условно соединяющих глаз наблюдателя с какой-либо точкой пространственного объекта), которые называются проецирующими.

Известны два метода проецирования: центральное и параллельное .

Центральное проецирование заключается в проведении через каждую точку (А, В, С ,…) изображаемого объекта и определённым образом выбранный центр проецирования (S ) прямой линии (SA , SB , >… — проецирующего луча ).

Рисунок 1.1 – Центральное проецирование

Введём следующие обозначения (Рисунок 1.1):

S – центр проецирования (глаз наблюдателя);

π 1 – плоскость проекций;

A, B, C

SA , SB – проецирующие прямые (проецирующие лучи).

Примечание : левой клавишей мыши можно переместить точку в горизонтальной плоскости, при щелчке на точке левой клавишей мыши, изменится направление перемещения и можно будет ее переместить по вертикали.

Центральной проекцией точки называется точка пересечения проецирующей прямой, проходящей через центр проецирования и объект проецирования (точку), с плоскостью проекций.

Свойство 1 . Каждой точке пространства соответствует единственная проекция, но каждой точке плоскости проекций соответствует множество точек пространства, лежащих на проецирующей прямой.

Докажем это утверждение.

На рисунке 1.1: точка А 1 – центральная проекция точки А на плоскости проекций π 1 . Но эту же проекцию могут иметь все точки, лежащие на проецирующей прямой. Возьмём на проецирующей прямой SA точку С . Центральная проекция точки С (С 1) на плоскости проекций π 1 совпадает с проекцией точки А (А 1):

  1. С SA ;
  2. SC ∩ π 1 =C 1 → C 1 ≡ A 1 .

Следует вывод, что по проекции точки нельзя судить однозначно о её положении в пространстве.

Чтобы устранить эту неопределенность, т.е. сделать чертеж обратимым , введём еще одну плоскость проекций (π 2) и ещё один центр проецирования (S 2) (Рисунок 1.2).

Рисунок 1.2 – Иллюстрация 1-го и 2-го свойств

Построим проекции точки А на плоскости проекций π 2 . Из всех точек пространства только точка А имеет своими проекциями А 1 на плоскость π 1 и А 2 на π 2 одновременно. Все другие точки лежащие на проецирующих лучах будут иметь хотя бы одну отличную проекцию от проекций точки А (например, точка В ).

Свойство 2 . Проекция прямой есть прямая.

Докажем данное свойство.

Соединим точки А и В между собой (Рисунок 1.2). Получим отрезок АВ , задающий прямую. Треугольник ΔSAB задает плоскость, обозначенную через σ. Известно, что две плоскости пересекаются по прямой: σ∩π 1 =А 1 В 1 , где А 1 В 1 – центральная проекция прямой, заданной отрезком АВ .

Метод центрального проецирования – это модель восприятия изображения глазом, применяется главным образом при выполнении перспективных изображений строительных объектов, интерьеров, а также в кинотехнике и оптике. Метод центрального проецирования не решает основной задачи, стоящей перед инженером – точно отразить форму, размеры предмета, соотношение размеров различных элементов.

1.2. Параллельное проецирование

Рассмотрим метод параллельного проецирования. Наложим три ограничения, которые позволят нам, пусть и в ущерб наглядности изображения, получить чертёж более удобным для использования его на практике:

  1. Удалим оба центра проекции в бесконечность. Таким образом, добьемся того, что проецирующие лучи из каждого центра станут параллельными, а, следовательно, соотношение истинной длины любого отрезка прямой и длины его проекции будут зависеть только от угла наклона этого отрезка к плоскостям проекций и не зависят от положения центра проекций;
  2. Зафиксируем направление проецирования относительно плоскостей проекций;
  3. Расположим плоскости проекций перпендикулярно друг другу, что позволит легко переходить от изображения на плоскостях проекций к реальному объекту в пространстве.

Таким образом, наложив эти ограничения на метод центрального проецирования, мы пришли к его частному случаю – методу параллельного проецирования (Рисунок 1.3).Проецирование, при котором проецирующие лучи, проходящие через каждую точку объекта, параллельно выбранному направлению проецирования P , называется параллельным.

Рисунок 1.3 – Метод параллельного проецирования

Введём обозначения:

Р – направление проецирования;

π 1 – горизонтальная плоскость проекций;

A, B – объекты проецирования – точки;

А 1 и В 1 – проекции точек А и В на плоскость проекций π 1 .

Параллельной проекцией точки называется точка пересечения проецирующей прямой, параллельной заданному направлению проецирования Р , с плоскостью проекций π 1 .

Проведём через точки А и В проецирующие лучи, параллельные заданному направлению проецирования Р . Проецирующий луч проведённый через точку А пересечёт плоскость проекций π 1 в точке А 1 . Аналогично проецирующий луч, проведённый через точку В пересечет плоскость проекций в точке В 1 . Соединив точки А 1 и В 1 , получим отрезок А 1 В 1 – проекция отрезка АВ на плоскость π 1 .

1.3. Ортогональное проецирование. Метод Монжа

Если направление проецирования Р перпендикулярно плоскости проекций p 1 , то проецирование называется прямоугольным (Рисунок 1.4),или ортогональным (греч. ortos – прямой, gonia – угол), если Р не перпендикулярно π 1 , то проецирование называется косоугольным .

Четырехугольник АА 1 В 1 В задаёт плоскость γ, которая называется проецирующей, поскольку она перпендикулярна к плоскости π 1 (γ⊥π 1). В дальнейшем будем использовать только прямоугольное проецирование.

Рисунок 1.4 – Ортогональное проецирование Рисунок 1.5- Монж, Гаспар (1746-1818)

Основоположником ортогонального проецирования считается французский учёный Гаспар Монж (Рисунок 1.5).

До Монжа строители, художники и учёные обладали довольно значительными сведениями о проекционных способах, и, всё же, только Гаспар Монж является творцом начертательной геометрии как науки.

Гаспар Монж родился 9 мая 1746 года в небольшом городке Боне (Бургундия) на востоке Франции в семье местного торговца. Он был старшим из пяти детей, которым отец, несмотря на низкое происхождение и относительную бедность семьи, постарался обеспечить самое лучшее образование из доступного в то время для выходцев из незнатного сословия. Его второй сын, Луи, стал профессором математики и астрономии, младший — Жан также профессором математики, гидрографии и навигации. Гаспар Монж получил первоначальное образование в городской школе ордена ораторианцев. Окончив её в 1762 году лучшим учеником, он поступил в колледж г. Лиона, также принадлежавший ораторианцам. Вскоре Гаспару доверяют там преподавание физики. Летом 1764 года Монж составил замечательный по точности план родного города Бона. Необходимые при этом способы и приборы для измерения углов и вычерчивания линий были изобретены самим составителем.

Во время обучения в Лионе получил предложение вступить в орден и остаться преподавателем колледжа, однако, вместо этого, проявив большие способности к математике, черчению и рисованию, сумел поступить в Мезьерскую школу военных инженеров, но (из-за происхождения) только на вспомогательное унтер-офицерское отделение и без денежного содержания. Тем не менее, успехи в точных науках и оригинальное решение одной из важных задач фортификации (о размещении укреплений в зависимости от расположения артиллерии противника) позволили ему в 1769 году стать ассистентом (помощником преподавателя) математики, а затем и физики, причём уже с приличным жалованием в 1800 ливров в год.

В 1770 году в возрасте 24-х лет Монж занимает должность профессора одновременно по двум кафедрам — математики и физики, и, кроме того, ведёт занятия по резанию камней. Начав с задачи точной резки камней по заданным эскизам применительно к архитектуре и фортификации, Монж пришёл к созданию методов, обобщённых им впоследствии в новой науке – начертательной геометрии, творцом которой он по праву считается. Учитывая возможность применения методов начертательной геометрии в военных целях при строительстве укреплений, руководство Мезьерской школы не допускало открытой публикации вплоть до 1799 года, книга вышла под названием Начертательная геометрия (Géométrie descriptive ) (стенографическая запись этих лекций была сделана в 1795 году). Изложенный в ней подход к чтению лекций по этой науке и выполнению упражнений сохранился до наших дней. Еще один значительный труд Монжа – Приложение анализа к геометрии (L’application de l’analyse à la géometrie , 1795) – представляет собой учебник аналитической геометрии, в котором особый акцент делается на дифференциальных соотношениях.

В 1780 был избран членом Парижской академии наук, в 1794 стал директором Политехнической школы. В течение восьми месяцев занимал пост морского министра в правительстве Наполеона, заведовал пороховыми и пушечными заводами республики, сопровождал Наполеона в его экспедиции в Египет (1798–1801). Наполеон пожаловал ему титул графа, удостоил многих других отличий.

Метод изображения объектов по Монжу заключается в двух основных моментах:

1. Положение геометрического объекта в пространстве, в данном примере точки А , рассматривается относительно двух взаимно перпендикулярных плоскостей π 1 и π 2 (Рисунок 1.6).

Они условно разделяют пространство на четыре квадранта. Точка А расположена в первом квадранте. Декартова система координат послужила основой для проекций Монжа. Монж заменил понятие осей проекций на линию пересечения плоскостей проекций (координатные оси) и предложил совместить координатные плоскости в одну путем поворота их вокруг координатных осей.

Рисунок 1.6 – Модель построения проекций точки

π 1 – горизонтальная (первая) плоскость проекций

π 2 – фронтальная (вторая) плоскость проекций

π 1 ∩π 2 — ось проекций (обозначим π 2 /π 1)

Рассмотрим пример проецирования точки А на две взаимно перпендикулярные плоскости проекций π 1 и π 2 .

Опустим из точки А перпендикуляры (проецирующие лучи) на плоскости π 1 и π 2 и отметим их основания, то есть точки пересечения этих перпендикуляров (проецирующих лучей) с плоскостями проекций. А 1 – горизонтальная (первая) проекция точки А; А 2 – фронтальная (вторая) проекция точки А; АА 1 и АА 2 – проецирующие прямые. Стрелки показывают направление проецирования на плоскости проекций π 1 и π 2 . Такая система позволяет однозначно определить положение точки относительно плоскостей проекций π 1 и π 2:

АА 1 ⊥π 1

А 2 А 0 ⊥π 2 /π 1 АА 1 = А 2 А 0 — расстояние от точки А до плоскости π 1

АА 2 ⊥π 2

А 1 А 0 ⊥π 2 /π 1 АА 2 = А 1 А 0 — расстояние от точки А до плоскости π 2

2. Совместим поворотом вокруг оси проекций π 2 /π 1 плоскости проекций в одну плоскость (π 1 с π 2), но так, чтобы изображения не накладывались друг на друга, (в направлении α, Рисунок 1.6), получим изображение, называемое прямоугольным чертежом (Рисунок 1.7):

Рисунок 1.7 – Ортогональный чертеж

Прямоугольный или ортогональный носит название эпюр Монжа .

Прямая А 2 А 1 называется линией проекционной связи , которая соединяет разноимённые проекции точки (А 2 — фронтальную и А 1 — горизонтальную) всегда перпендикулярна оси проекций (оси координат) А 2 А 1 ⊥π 2 /π 1 . На эпюре отрезки, обозначенные фигурными скобками, представляют собой:

  • А 0 А 1 – расстояние от точки А до плоскости π 2 , соответствующее координате y А;
  • А 0 А 2 – расстояние от точки А до плоскости π 1 , соответствующее координате z А.

1.4. Прямоугольные проекции точки. Свойства ортогонального чертежа

1. Две прямоугольные проекции точки лежат на одной линии проекционной связи, перпендикулярной к оси проекций.

2. Две прямоугольные проекции точки однозначно определяют её положение в пространстве относительно плоскостей проекций.

Убедимся в справедливости последнего утверждения, для чего повернём плоскость π 1 в исходное положение (когда π 1 ⊥π 2). Для того, чтобы построить точку А необходимо из точек А 1 и А 2 восстановить проецирующие лучи, а фактически – перпендикуляры к плоскостям π 1 и π 2 , соответственно. Точка пересечения этих перпендикуляров фиксирует в пространстве искомую точку А . Рассмотрим ортогональный чертеж точки А (Рисунок 1.8).

Рисунок 1.8 – Построение эпюра точки

Введём третью (профильную) плоскость проекций π 3 перпендикулярную π 1 и π 2 (задана осью проекций π 2 /π 3).

Расстояние от профильной проекции точки до вертикальной оси проекций А ‘ 0 A 3 позволяет определить расстояние от точки А до фронтальной плоскости проекций π 2 . Известно, что положение точки в пространстве можно зафиксировать относительно декартовой системы координат с помощью трёх чисел (координат) A (X A ; Y A ; Z A) или относительно плоскостей проекций с помощью её двух ортогональных проекций (A 1 =(X A ; Y A); A 2 =(X A ; Z A)). На ортогональном чертеже по двум проекциям точки можно определить три её координаты и, наоборот, по трём координатам точки, построить её проекции (Рисунок 1.9, а и б).

Рисунок 1.9 – Построение эпюра точки по её координатам

По расположению на эпюре проекций точки можно судить о её расположении в пространстве:

  • А А 1 лежит под осью координат X , а фронтальная — А 2 – над осью X , то можно говорить, что точка А принадлежит 1-му квадранту;
  • если на эпюре горизонтальная проекция точки А А 1 лежит над осью координат X , а фронтальная — А 2 – под осью X , то точка А принадлежит 3-му квадранту;
  • А А 1 и А 2 лежат над осью X , то точка А принадлежит 2-му квадранту;
  • если на эпюре горизонтальная и фронтальная проекции точки А А 1 и А 2 лежат под осью X , то точка А принадлежит 4-му квадранту;
  • если на эпюре проекция точки совпадает с самой точкой, то значит – точка принадлежит плоскости проекций;
  • точка, принадлежащая плоскости проекций или оси проекций (оси координат), называется точкой частного положения .

Для определения в каком квадранте пространства расположена точка, достаточно определить знак координат точки.

Зависимости квадранта положения точки и знаков координат
X Y Z
I + + +
II + +
III +
IV + +

Упражнение

Построить ортогональные проекции точки с координатами А (60, 20, 40) и определить в каком квадранте расположена точка.

Решение задачи: по оси OX отложить значение координаты X A =60 , затем через эту точку на оси OX восстановить линию проекционной связи, перпендикулярную к OX , по которой вверх отложить значение координаты Z A =40 , а вниз – значение координаты Y A =20 (Рисунок 1.10). Все координаты положительные, значит точка расположена в I квадранте.

Рисунок 1.10 – Решение задачи

1.5. Задачи для самостоятельного решения

1. По эпюру определите положение точки относительно плоскостей проекций (Рисунок 1.11).

Рисунок 1.11

2. Достройте недостающие ортогональные проекции точек А , В , С на плоскости проекций π 1 , π 2 , π 3 (Рисунок 1.12).

Рисунок 1.12

3. Постройте проекции точки:

  • Е , симметричной точке А относительно плоскости проекций π 1 ;
  • F , симметричной точке В относительно плоскости проекций π 2 ;
  • G , симметричной точке С относительно оси проекций π 2 /π 1 ;
  • H , симметричной точке D относительно биссекторной плоскости второго и четвертого квадрантов.

4. Постройте ортогональные проекции точки К , расположенной во втором квадранте и удаленной от плоскостей проекций π 1 на 40 мм, от π 2 — на 15 мм.

В этой статье мы найдем ответы на вопросы о том, как создать проекцию точки на плоскость и как определить координаты этой проекции. Опираться в теоретической части будем на понятие проецирования. Дадим определения терминам, сопроводим информацию иллюстрациями. Закрепим полученные знания при решении примеров.

Yandex.RTB R-A-339285-1

Проецирование, виды проецирования

Для удобства рассмотрения пространственных фигур используют чертежи с изображением этих фигур.

Определение 1

Проекция фигуры на плоскость – чертеж пространственной фигуры.

Очевидно, что для построения проекции существует ряд используемых правил.

Определение 2

Проецирование – процесс построения чертежа пространственной фигуры на плоскости с использованием правил построения.

Плоскость проекции - это плоскость, в которой строится изображение.

Использование тех или иных правил определяет тип проецирования: центральное или параллельное .

Частным случаем параллельного проецирования является перпендикулярное проецирование или ортогональное: в геометрии в основном используют именно его. По этой причине в речи само прилагательное «перпендикулярное» часто опускают: в геометрии говорят просто «проекция фигуры» и подразумевают под этим построение проекции методом перпендикулярного проецирования. В частных случаях, конечно, может быть оговорено иное.

Отметим тот факт, что проекция фигуры на плоскость по сути есть проекция всех точек этой фигуры. Поэтому, чтобы иметь возможность изучать пространственную фигуру на чертеже, необходимо получить базовый навык проецировать точку на плоскость. О чем и будем говорить ниже.

Напомним, что чаще всего в геометрии, говоря о проекции на плоскость, имеют в виду применение перпендикулярной проекции.

Произведем построения, которые дадут нам возможность получить определение проекции точки на плоскость.

Допустим, задано трехмерное пространство, а в нем - плоскость α и точка М 1 , не принадлежащая плоскости α . Начертим через заданную точку М 1 прямую а перпендикулярно заданной плоскости α . Точку пересечения прямой a и плоскости α обозначим как H 1 , она по построению будет служить основанием перпендикуляра, опущенного из точки М 1 на плоскость α .

В случае, если задана точка М 2 , принадлежащая заданной плоскости α , то М 2 будет служить проекцией самой себя на плоскость α .

Определение 3

– это либо сама точка (если она принадлежит заданной плоскости), либо основание перпендикуляра, опущенного из заданной точки на заданную плоскость.

Нахождение координат проекции точки на плоскость, примеры

Пускай в трехмерном пространстве заданы: прямоугольная система координат O x y z , плоскость α , точка М 1 (x 1 , y 1 , z 1) . Необходимо найти координаты проекции точки М 1 на заданную плоскость.

Решение очевидным образом следует из данного выше определения проекции точки на плоскость.

Обозначим проекцию точки М 1 на плоскость α как Н 1 . Согласно определению, H 1 является точкой пересечения данной плоскости α и прямой a , проведенной через точку М 1 (перпендикулярной плоскости). Т.е. необходимые нам координаты проекции точки М 1 – это координаты точки пересечения прямой a и плоскости α .

Таким образом, для нахождения координат проекции точки на плоскость необходимо:

Получить уравнение плоскости α (в случае, если оно не задано). Здесь вам поможет статья о видах уравнений плоскости;

Определить уравнение прямой a , проходящей через точку М 1 и перпендикулярной плоскости α (изучите тему об уравнении прямой, проходящей через заданную точку перпендикулярно к заданной плоскости);

Найти координаты точки пересечения прямой a и плоскости α (статья – нахождение координат точки пересечения плоскости и прямой). Полученные данные и будут являться нужными нам координатами проекции точки М 1 на плоскость α .

Рассмотрим теорию на практических примерах.

Пример 1

Определите координаты проекции точки М 1 (- 2 , 4 , 4) на плоскость 2 х – 3 y + z - 2 = 0 .

Решение

Как мы видим, уравнение плоскости нам задано, т.е. составлять его необходимости нет.

Запишем канонические уравнения прямой a , проходящей через точку М 1 и перпендикулярной заданной плоскости. В этих целях определим координаты направляющего вектора прямой a . Поскольку прямая а перпендикулярна заданной плоскости, то направляющий вектор прямой a – это нормальный вектор плоскости 2 х – 3 y + z - 2 = 0 . Таким образом, a → = (2 , - 3 , 1) – направляющий вектор прямой a .

Теперь составим канонические уравнения прямой в пространстве, проходящей через точку М 1 (- 2 , 4 , 4) и имеющей направляющий вектор a → = (2 , - 3 , 1) :

x + 2 2 = y - 4 - 3 = z - 4 1

Для нахождения искомых координат следующим шагом определим координаты точки пересечения прямой x + 2 2 = y - 4 - 3 = z - 4 1 и плоскости 2 х - 3 y + z - 2 = 0 . В этих целях переходим от канонических уравнений к уравнениям двух пересекающихся плоскостей:

x + 2 2 = y - 4 - 3 = z - 4 1 ⇔ - 3 · (x + 2) = 2 · (y - 4) 1 · (x + 2) = 2 · (z - 4) 1 · (y - 4) = - 3 · (z + 4) ⇔ 3 x + 2 y - 2 = 0 x - 2 z + 10 = 0

Составим систему уравнений:

3 x + 2 y - 2 = 0 x - 2 z + 10 = 0 2 x - 3 y + z - 2 = 0 ⇔ 3 x + 2 y = 2 x - 2 z = - 10 2 x - 3 y + z = 2

И решим ее, используя метод Крамера:

∆ = 3 2 0 1 0 - 2 2 - 3 1 = - 28 ∆ x = 2 2 0 - 10 0 - 2 2 - 3 1 = 0 ⇒ x = ∆ x ∆ = 0 - 28 = 0 ∆ y = 3 2 0 1 - 10 - 2 2 2 1 = - 28 ⇒ y = ∆ y ∆ = - 28 - 28 = 1 ∆ z = 3 2 2 1 0 - 10 2 - 3 2 = - 140 ⇒ z = ∆ z ∆ = - 140 - 28 = 5

Таким образом, искомые координаты заданной точки М 1 на заданную плоскость α будут: (0 , 1 , 5) .

Ответ: (0 , 1 , 5) .

Пример 2

В прямоугольной системе координат O x y z трехмерного пространства даны точки А (0 , 0 , 2) ; В (2 , - 1 , 0) ; С (4 , 1 , 1) и М 1 (-1, -2, 5). Необходимо найти координаты проекции М 1 на плоскость А В С

Решение

В первую очередь запишем уравнение плоскости, проходящей через три заданные точки:

x - 0 y - 0 z - 0 2 - 0 - 1 - 0 0 - 2 4 - 0 1 - 0 1 - 2 = 0 ⇔ x y z - 2 2 - 1 - 2 4 1 - 1 = 0 ⇔ ⇔ 3 x - 6 y + 6 z - 12 = 0 ⇔ x - 2 y + 2 z - 4 = 0

Запишем параметрические уравнения прямой a , которая будет проходить через точку М 1 перпендикулярно плоскости А В С. Плоскость х – 2 y + 2 z – 4 = 0 имеет нормальный вектор с координатами (1 , - 2 , 2) , т.е. вектор a → = (1 , - 2 , 2) – направляющий вектор прямой a .

Теперь, имея координаты точки прямой М 1 и координаты направляющего вектора этой прямой, запишем параметрические уравнения прямой в пространстве:

Затем определим координаты точки пересечения плоскости х – 2 y + 2 z – 4 = 0 и прямой

x = - 1 + λ y = - 2 - 2 · λ z = 5 + 2 · λ

Для этого в уравнение плоскости подставим:

x = - 1 + λ , y = - 2 - 2 · λ , z = 5 + 2 · λ

Теперь по параметрическим уравнениям x = - 1 + λ y = - 2 - 2 · λ z = 5 + 2 · λ найдем значения переменных x , y и z при λ = - 1: x = - 1 + (- 1) y = - 2 - 2 · (- 1) z = 5 + 2 · (- 1) ⇔ x = - 2 y = 0 z = 3

Таким образом, проекция точки М 1 на плоскость А В С будет иметь координаты (- 2 , 0 , 3) .

Ответ: (- 2 , 0 , 3) .

Отдельно остановимся на вопросе нахождения координат проекции точки на координатные плоскости и плоскости, которые параллельны координатным плоскостям.

Пусть задана точки М 1 (x 1 , y 1 , z 1) и координатные плоскости O x y , О x z и O y z . Координатами проекции этой точки на данные плоскости будут соответственно: (x 1 , y 1 , 0) , (x 1 , 0 , z 1) и (0 , y 1 , z 1) . Рассмотрим также плоскости, параллельные заданным координатным плоскостям:

C z + D = 0 ⇔ z = - D C , B y + D = 0 ⇔ y = - D B

И проекциями заданной точки М 1 на эти плоскости будут точки с координатами x 1 , y 1 , - D C , x 1 , - D B , z 1 и - D A , y 1 , z 1 .

Продемонстрируем, как был получен этот результат.

В качестве примера определим проекцию точки М 1 (x 1 , y 1 , z 1) на плоскость A x + D = 0 . Остальные случаи – по аналогии.

Заданная плоскость параллельна координатной плоскости O y z и i → = (1 , 0 , 0) является ее нормальным вектором. Этот же вектор служит направляющим вектором прямой, перпендикулярной к плоскости O y z . Тогда параметрические уравнения прямой, проведенной через точку M 1 и перпендикулярной заданной плоскости, будут иметь вид:

x = x 1 + λ y = y 1 z = z 1

Найдем координаты точки пересечения этой прямой и заданной плоскости. Подставим сначала в уравнение А x + D = 0 равенства: x = x 1 + λ , y = y 1 , z = z 1 и получим: A · (x 1 + λ) + D = 0 ⇒ λ = - D A - x 1

Затем вычислим искомые координаты, используя параметрические уравнения прямой при λ = - D A - x 1:

x = x 1 + - D A - x 1 y = y 1 z = z 1 ⇔ x = - D A y = y 1 z = z 1

Т.е., проекцией точки М 1 (x 1 , y 1 , z 1) на плоскость будет являться точка с координатами - D A , y 1 , z 1 .

Пример 2

Необходимо определить координаты проекции точки М 1 (- 6 , 0 , 1 2) на координатную плоскость O x y и на плоскость 2 y - 3 = 0 .

Решение

Координатной плоскости O x y будет соответствовать неполное общее уравнение плоскости z = 0 . Проекция точки М 1 на плоскость z = 0 будет иметь координаты (- 6 , 0 , 0) .

Уравнение плоскости 2 y - 3 = 0 возможно записать как y = 3 2 2 . Теперь просто записать координаты проекции точки M 1 (- 6 , 0 , 1 2) на плоскость y = 3 2 2:

6 , 3 2 2 , 1 2

Ответ: (- 6 , 0 , 0) и - 6 , 3 2 2 , 1 2

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter