Электронный парамагнитный и ядерный магнитный резонанс. Электронный парамагнитный резонанс (ЭПР) Электронно парамагнитный резонанс

Электронный парамагнитный резонанс (ЭПР) - явление резонансного поглощения электромагнитного излучения парамагнитным веществом, помещенным в постоянное магнитное поле. Обусловлен квантовыми переходами между магнитными подуровнями парамагнитных атомов и ионов (эффект Зеемана). Спектры ЭПР наблюдаются, главным образом, в диапазоне сверхвысоких частот (СВЧ).

Метод электронного парамагнитного резонанса позволяет оценить эффекты, проявляющиеся в спектрах ЭПР из-за наличия локальных магнитных полей. В свою очередь локальные магнитные поля отражают картину магнитных взаимодействий в исследуемой системе. Таким образом, метод ЭПР спектроскопии позволяет исследовать как структуру парамагнитных частиц, так и взаимодействие парамагнитных частиц с окружением.

ЭПР спектрометр предназначен для регистрации спектров и измерения параметров спектров образцов парамагнитных веществ в жидкой, твердой или порошкообразной фазе. Он используется при реализации существующих и разработке новых методик исследований веществ методом ЭПР в различных областях науки, техники и здравоохранения: например, для исследования функциональных характеристик биологических жидкостей по спектрам введенных в них спиновых зондов в медицине; для обнаружения радикалов и определения их концентрации; в исследовании внутримолекулярной подвижности в материалах; в сельском хозяйстве; в геологии .

Базовым устройством анализатора является спектрометрический блок - спектрометр электронного парамагнитного резонанса (ЭПР спектрометр).

Анализатор обеспечивает возможность исследования образцов:

  • с регуляторами температур - системами термостатирования образца (в том числе, в диапазоне температур от -188 до +50 ºС и при температуре жидкого азота);
  • в кюветах, ампулах, капиллярах и трубках с использованием систем автоматической смены и дозирования образцов.

Особенности работы ЭПР спектрометра

Парамагнитный образец в специальной кювете (ампуле или капилляре) помещается внутрь рабочего резонатора, расположенного между полюсами электромагнита спектрометра. Электромагнитное СВЧ излучение постоянной частоты поступает в резонатор. Условие резонанса достигается путем линейного изменения напряженности магнитного поля. Для повышения чувствительности и разрешающей способности анализатора используется высокочастотная модуляция магнитного поля.

Когда индукция магнитного поля достигает величины, характерной для данного образца, происходит резонансное поглощение энергии этих колебаний. Преобразованное излучение далее поступает на детектор. После детектирования сигнал обрабатывается и подается на регистрирующее устройство. Высокочастотная модуляция и фазочувствительное детектирование преобразуют сигнал ЭПР в первую производную кривой поглощения, в виде которой и происходит регистрация спектров электронного парамагнитного резонанса. В этих условиях регистрируется и интегральная линия поглощения ЭПР. Пример регистрируемого спектра резонансного поглощения представлен на рисунке ниже.

АО «МЕДИЦИНСКИЙ УНИВЕРСИТЕТ АСТАНА»

Кафедра информатики и математики с курсом медбиофизики

Реферат

По медбиофизике

Тема «Использование ядерного магнитного резонанса (ЯМР) и электронного парамагнитного резонанса (ЭПР) в медицинских исследованиях»

Работа выполнена студентом:

Факультет общей медицины, стоматологии и фармации

Работу проверил:

I Введение.

II Основная часть. ЭПР и ЯМР: физическая сущность и процессы, лежащие в основе этих явлений, применение в медико-биологических исследованиях.

1) Электронный парамагнитный резонанс.

а) Физическая сущность ЭПР.

б) Расщепление энергетических уровней. Эффект Зеемана.

в) Электронное расщепление. Сверхтонкое расщепление.

г) Спектрометры ЭПР: устройство и принцип работы.

д) Метод спинового зонда.

е) Применение спектров ЭПР в медико-биологических исследованиях.

2) Ядерный магнитный резонанс.

а) Физическая сущность ЯМР.

б) Спектры ЯМР.

в) Использование ЯМР в медико-биологических исследованиях: ЯМР-интроскопия (магнитно-резонансная томография).

III Заключение. Значение медицинских методов исследования, основывающихся на ЭПР и ЯМР.


I . Введение.

У атома, помещенного в магнитное поле, спонтанные переходы между подуровнями одного и того же уровня маловероятны. Однако такие переходы осуществляются индуцировано под влиянием внешнего электромагнитного поля. Необходимым условием является совпадение частоты электромагнитного поля с частотой фотона, соответствующего разности энергий между расщепленными подуровнями. При этом можно наблюдать поглощение энергии электромагнитного поля, которое называют магнитным резонансом. В зависимости от типа частиц – носителей магнитного момента – различают электронный парамагнитный резонанс (ЭПР) и ядерный магнитный резонанс (ЯМР).

II . Основная часть. ЭПР и ЯМР: физическая сущность и процессы, лежащие в основе этих явлений, применение в медико-биологических исследованиях.

1. Электронный парамагнитный резонанс. Электронный парамагнитный резонанс (ЭПР), это резонансное поглощение электромагнитной энергии в сантиметровом или миллиметровом диапазоне длин волн веществами, содержащими парамагнитные частицы. ЭПР - один из методов радиоспектроскопии. Вещество называется парамагнитным, если оно не имеет макроскопического магнитного момента в отсутствие внешнего магнитного поля, но приобретает его после приложения поля, при этом величина момента зависит от поля, а сам момент направлен в ту же сторону, что и поле. С микроскопической точки зрения парамагнетизм вещества обусловлен тем, что атомы, ионы или молекулы, входящие в это вещество, обладают постоянными магнитными моментами, случайно ориентированными друг относительно друга в отсутствие внешнего магнитного поля. Приложение постоянного магнитного поля приводит к направленному изменению их ориентаций, вызывающему появление суммарного (макроскопического) магнитного момента.

ЭПР открыт Е. К. Завойским в 1944 году. Начиная с 1922 в ряде работ высказывались соображения о возможности существования ЭПР. Попытка экспериментально обнаружить ЭПР была предпринята в середине 30-х годов нидерландским физиком К. Гортером. Однако ЭПР удалось наблюдать только благодаря радиоспектроскопическим методам, разработанным Завойским. ЭПР - частный случай магнитного резонанса.

Физическая сущность ЭПР. Суть явления электронного парамагнитного резонанса заключается в следующем. Если поместить свободный радикал с результирующим моментом количества движения J в магнитном поле с напряжённостью B 0 , то для J, отличного от нуля, в магнитном поле снимается вырождение, и в результате взаимодействия с магнитным полем возникает 2J+1 уровней, положение которых описывается выражением: W = gβB 0 M, (где М=+J, +J-1, …-J) и определяется Зеемановским взаимодействием магнитного поля с магнитным моментом J.

Если теперь к парамагнитному центру приложить электромагнитное поле с частотой ν, поляризованное в плоскости, перпендикулярной вектору магнитного поля B 0 , то оно будет вызывать магнитные дипольные переходы, подчиняющиеся правилу отбора ΔМ=1. При совпадении энергии электронного перехода с энергией фотона электромагнитной волны будет происходить резонансное поглощение СВЧ излучения. Таким образом, условие резонанса определяются фундаментальным соотношением магнитного резонанса hν = gβB 0 .

Расщепление энергетических уровней. Эффект Зеемана. В отсутствие внешнего магнитного поля магнитные моменты электронов ориентированы случайным образом, и их энергия практически не отличается друг от друга (Е 0). При наложении внешнего магнитного поля магнитные моменты электронов ориентируются в поле в зависимости от величины спинового магнитного момент, и их энергетический уровень расщепляется на два. Энергия взаимодействия магнитного момента электрона с магнитным полем выражается уравнением:

, - магнитный момент электрона, Н - напряженность магнитного поля. Из уравнения коэффициента пропорциональности следует, что ,

а энергия взаимодействия электрона с внешним магнитным полем составит

.

Это уравнение описывает эффект Зеемана, который можно выразить следующими словами: энергетические уровни электронов, помещенных в магнитное поле, расщепляются в этом поле в зависимости от величины спинового магнитного момента и интенсивности магнитного поля.

Электронное расщепление. Сверхтонкое расщепление. Большинство приложений, в том числе и медико-биологических, базируются на анализе группы линий (а не только синглентых) в спектре поглощения ЭПР. Наличие в спектре ЭПР группы близких линий условно называют расщеплением. Имеется два характерных типа расщепления для спектра ЭПР. Первое – электронное расщепление – возникает в тех случаях, когда молекула или атом обладают не одним, а несколькими электронами, вызывающими ЭПР. Второе – сверхтонкое расщепление – наблюдается при взаимодействии электронов с магнитным моментом ядра. Согласно классическим представлениям, электрон, обращающийся вокруг ядра, как и любая движущаяся по круговой орбите заряженная частица, имеет дипольный магнитный момент. Аналогично и в квантовой механике, орбитальный угловой момент электрона создаёт определённый магнитный момент. Взаимодействие этого магнитного момента с магнитным моментом ядра (обусловленным ядерным спином) приводит к сверхтонкому расщеплению (т. е. создаёт сверхтонкую структуру). Однако электрон также обладает спином, дающим вклад в его магнитный момент. Поэтому сверхтонкое расщепление имеется даже для термов с нулевым орбитальным моментом. Расстояние между подуровнями сверхтонкой структуры по порядку величины в 1000 раз меньше, чем между уровнями тонкой структуры (такой порядок величины по существу обусловлен отношением массы электрона к массе ядра).

Спектрометры ЭПР: устройство и принцип работы. Устройство радиоспектрометра ЭПР во многом напоминает устройство спектрофотометра для измерения оптического поглощения в видимой и ультрафиолетовой частях спектра. Источником излучения в радиоспектрометре является клистрон, представляющий из себя радиолампу, дающую монохроматическое излучение в диапазоне сантиметровых волн. Диафрагме спектрофотометра в радиоспектрометре соответствует аттенюатор, позволяющий дозировать мощность, падающую на образец. Кювета с образцом в радиоспектрометре находится в специальном блоке, называемом резонатором. Резонатор представляет собой параллелепипед, имеющий цилиндрическую или прямоугольную полость в которой находится поглощающий образец. Размеры резонатора таковы, что в нем образуется стоячая волна. Элементом отсутствующем в оптическом спектрометре является электромагнит, создающий постоянное магнитное поле, необходимое для расщепления энергетических уровней электронов. Излучение, прошедшее измеряемый образец, в радиоспектрометре и в спектрофотометре, попадает на детектор, затем сигнал детектора усиливается и регистрируется на самописце или компьютере. Следует отметить еще одно отличие радиоспектрометра. Оно заключается в том, что излучение радиодиапазона передается от источника к образцу и далее к детектору с помощью специальных трубок прямоугольного сечения, называемых волноводами. Размеры сечения волноводов определяются длиной волны передаваемого излучения. Эта особенность передачи радиоизлучения по волноводам и определяет тот факт, что для регистрации спектра ЭПР в радиоспектрометре используется постоянная частота излучения, а условие резонанса достигается изменением величины магнитного поля. Еще одной важной особенностью радиоспектрометра является усиление сигнала посредством его модуляции высокочастотным переменным полем. В результате модуляции сигнала происходит его дифференцирование и превращение линии поглощения в свою первую производную, являющуюся сигналом ЭПР.

Метод спинового зонда. Спиновые зонды - индивидуальные парамагнитные химические вещества, применяемые для изучения различных молекулярных систем с помощью спектроскопии ЭПР. Характер изменения спектра ЭПР этих соединений позволяет получать уникальную информацию о взаимодействиях и динамике макромолекул и о свойствах различных молекулярных систем. Это метод исследования молекулярной подвижности и различных структурных превращений в конденсированных средах по спектрам электронного парамагнитного резонанса стабильных радикалов (зондов), добавленных к исследуемому веществу. Если стабильные радикалы химически связаны с частицами исследуемой среды, их называют метками и говорят о методе спиновых (или парамагнитных) меток. В качестве зондов и меток используют главным образом нитроксильные радикалы, которые устойчивы в широком интервале температур (до 100-200○С), способны вступать в химические реакции без потери парамагнитных свойств, хорошо растворимы в водных и органических средах. Высокая чувствительность метода ЭПР позволяет вводить зонды (в жидком или парообразном состоянии) в малых количествах - от 0,001 до 0,01% по массе, что не вызывает изменения свойств исследуемых объектов. Метод спиновых зондов и меток применяется особенно широко для исследования синтетических полимеров и биологических объектов. При этом можно изучать общие закономерности динамики низкомолекулярных частиц в полимерах, когда спиновые зонды моделируют поведение различных добавок (пластификаторы, красители, стабилизаторы, инициаторы); получать информацию об изменении молекулярной подвижности при химической модификации и структурно-физических превращениях (старение, структурирование, пластификация, деформация); исследовать бинарные и многокомпонентные системы (сополимеры, наполненные и пластифицированные полимеры, композиты); изучать растворы полимеров, в частности влияние растворителя и температуры на их поведение; определять вращательную подвижность ферментов, структуру и пространств. расположение групп в активном центре фермента, конформацию белка при различных воздействиях, скорость ферментативного катализа; изучать мембранные препараты (например, определять микровязкость и степень упорядоченности липидов в мембране, исследовать липид-белковые взаимодействия, слияние мембран); изучать жидкокристаллические системы (степень упорядоченности в расположении молекул, фазовые переходы), ДНК, РНК, полинуклеотиды (структурные превращения под влиянием температуры и среды, взаимодействие ДНК с лигандами и интеркалирующими соединениями). Метод используют также в различных областях медицины для исследования механизма действия лекарственных препаратов, анализа изменений в клетках и тканях при различных заболеваниях, определении низких концентраций токсичных и биологически активных веществ в организме, изучения механизмов действия вирусов.

Метод ЭПР приобрел большое значение в химии, физике, биологии, медицине, поскольку позволяет определять структуры и концентрации органических и неорганических свободных радикалов. Свободные радикалы могут быть созданы химическим методом, фотохимически или при действии излучения высокой энергии.

Спектр ЭПР дают свободные радикалы, молекулы с нечетным числом электронов, триплетные состояния органических молекул, парамагнитные ионы переходных металлов и их комплексы.

Метод ЭПР начал применятся в биологических исследованиях в 50-ые годы 20 в. Благодаря довольно высокой чувствительности и возможности в определении природы парамагнитных частиц этот метод нашел широкое применение для изучения целого ряда биологических процессов.

Помимо сигналов свободных радикалов в тканях наблюдается целый ряд сигналов металлов (Fe, Cu, Mn, Ni, Co). Эти металлы входят в состав металлопротеинов, принимающих участие в целом ряде ферментативных процессов. Железосодержащие белки (цитохромы, ферредоксины) являются компонентами электрон-транспортных цепей в митохондриях и хлоропластах.

Методом ЭПР исследован целый ряд ферментативных систем, обнаружены свободно-радикальные продукты субстратов. В ряде случаев оказалось возможным наблюдать за окислительно-восстановительными превращениями ионов металлов, входящих в активный центр фермента.

ЭПР-спектроскопия широко применяется в исследованиях фотосинтеза: изучается механизм первичных стадий разделения зарядов в реакционных центрах и дальнейший перенос электрона по цепи электронного транспорта.

Помимо изучения механизмов реакций, протекающих с участием парамагнитных частиц, метод ЭПР широко используют и для исследования структурно-динамических свойств макромолекул и биомембран.

В последнее время для изучения биологических и полимерных систем часто используются методы «парамагнитного зонда», «спиновых меток» и «спиновых ловушек». Все они основаны на использовании стабильных азотнокислых радикалов различного строения, а точнее на анализе изменений ширины линий спектров ЭПР, вызванных вращательной и поступательной диффузией этих радикалов.

Основная идея метода спиновых меток и зондов состоит в присоединении к той или иной функциональной группе белка свободного радикала и изучению характеристик его сигналов ЭПР. Наиболее удобны в этом отношении нитроксильные радикалы, содержащие свободнорадикальную группу:

где R 1 и R 2 – различные химические группировки.

Метод «спиновых меток» заключается в том, что к непарамагнитной молекуле стабильный радикал прикрепляется ковалентной или какой-либо другой связью так, чтобы свободная валентность оказалась незатронутой. Характер движения отчетливо проявляется в форме спектра и служит важным источником информации об исходной молекуле.

Если молекула встраивается в белковую молекулу и там удерживается с помощью электростатических сил или гидрофобных взаимодействий, то такая молекула называется спиновым зондом. Метод основан на исследовании вращательной и поступательной подвижности радикала-зонда в водных или органических средах или в матрице полимера. Подвижность радикала зависит от подвижности молекул окружающей среды, поэтому радикал является своеобразным молекулярным датчиком структурной и динамической информации о локальном окружении.

Форма сигнала ЭПР, даваемого спиновой меткой или зондом, зависит от микроокружения нитроксильного радикала и, в первую очередь, от вращательной подвижности той группы, в состав которой он входит.

Основной недостаток спиновых меток и зондов заключается в том, что хотя эти молекулы и невелики, всё же, включаясь в липидный бислой, они несколько изменяют его свойства.

В основе метода «спиновых ловушек» лежит реакция специально вводимой в исследуемую систему непарамагнитной молекулы (ловушки) с короткоживущим радикалом, при этом образуется стабильный радикал. Кинетическое поведение образующегося стабильного радикала и его структура дают сведения о кинетике и механизме процессов в изучаемой системе.

Объектами исследования в химии с применением ЭПР-спектроскопии являются: 1) свободные радикалы в промежуточных продуктах органических реакций; 2) кинетика реакций; 3) химия поверхностных явлений; 4) разрушение, происходящее в результате облучения; 5) полимеризация, обусловленная свободными радикалами; 6) свободные радикалы, замороженные при низких температурах; 7) металлы переменной валентности и их комплексы.

Метод ЭПР дает ценный вклад в исследование кинетики и механизмов химических реакций. Во-первых, измерение ширины линий в спектрах ЭПР можно использовать для определения констант скорости процессов с участием парамагнитных частиц, характеристическое время жизни которых лежит в интервале 10 -5 -10 -10 с. Во-вторых, метод ЭПР позволяет регистрировать с высокой чувствительностью в разных условиях парамагнитные частицы, что дает ценную информацию о механизмах реакций. В-третьих, спектрометр ЭПР можно использовать как аналитический прибор для детектирования в ходе реакций концентрации реагирующих парамагнитных молекул. Количество парамагнитных центров в образце пропорционально площади под спектром поглощения.

Метод ЭПР широко используется для исследования быстрых процессов, связанных с изменением молекулярной структуры радикалов. Эти процессы включают заторможенное вращение и конформационные переходы.

Для короткоживущих радикалов чувствительность метода может быть повышена путем использования проточной системы или непрерывного облучения. Спектры ЭПР нестабильных радикалов можно получить, зафиксировав их в стеклах, матрицах замороженных благородных газов или кристаллах.

Вопросы для собеседования

1. Теоретические основы метода.

2. Аналитические параметры ЭПР-спектра.

3. Спектрометры ЭПР.

4. Применение ЭПР.

Тестовые задания

1. Условие резонанса в методе ЭПР:

а) n= gH 0 (1-s) / 2p; б) δ = (ΔН/Н 0);·в)hn=gβH 0 ; г) δ = (Δν/ν 0)/(ΔН/Н 0).

2. Что происходит в момент резонанса в методе ЭПР:

а) происходит поглощение квантов излучения, переориентации спинов не происходит;

б) происходит поглощение квантов излучения и переориентации спинов, т.е. переход из нижнего энергетического состояния в верхнее и наоборот. Количество переходов снизу вверх больше числа переходов сверху вниз.

в) происходит поглощение квантов излучения и переориентации спинов, т.е. переход из нижнего энергетического состояния в верхнее и наоборот. Количество переходов сверху вниз больше числа переходов снизу вверх.

3. Параметры спектров ЭПР:

а) g-фактор, ширина полосы поглощения, интенсивность линии поглощения;

б) общее число сигналов, интенсивность сигналов, химический сдвиг, мультиплетность сигнала;

в) g-фактор, ширина полосы поглощения, интенсивность линии поглощения, СТС спектров ЭПР.


МАСС-СПЕКРОМЕТРИЯ

Данный метод принципиально отличается от спектроскопических методов. Методы масс-спектрометрии основаны на ионизации вещества, разделении ионов, согласно отношению (m/z ), и регистрации массы образующихся осколков.

Теоретические и экспериментальные основы масс-спектрометрии были заложены еще Д.Д. Томсоном, который впервые в 1912 г. создал прибор для получения масс-спектра положительных ионов. Однако его прибор имел низкое разрешение. Его ученик Ф. Астон в 1918 г. существенно повысил разрешение и на своем приборе впервые открыл изотопы элементов. Практически одновременно с Ф. Астоном в Чикаго А. Демпстер сконструирован первый масс-спектрометр, в котором анализатором служило поперечное магнитное поле, а ионные токи измерялись электрическими методами. Схема его используется и в современных приборах.

Ионизация молекул должна проводиться в таких условиях, при которых образовавшийся ион вне зависимости от метода ионизации не претерпевал бы никаких столкновений с другими молекулами или ионами. Это необходимо для установления взаимосвязи между свойствами иона и молекулы.

Методы ионизации

Ионизация может проводиться различными методами.

1. Метод ионизации электронным ударом (ЭУ).

Это наиболее распространенный метод получения ионов в связи с простотой и доступностью источников ионов и их высокой эффективностью. Допустим, что через пары вещества проходит поток электронов, энергию которых можно постепенно увеличивать. Если эта энергия достигнет определенного уровня, то при столкновении электрона с молекулой может произойти «выбивание» из нее электрона с образованием молекулярного иона:

многоатомная молекула молекулярный ион (катион-радикал)

Наименьшая энергия бомбардирующих электронов, при которой возможно образование из данной молекулы иона, называется энергией ионизации вещества. Энергия ионизации является мерой прочности, с какой молекула удерживает наименее связанный с ней электрон. Для органических молекул энергия ионизации составляет 9 ÷12 эВ.

Если энергия электронов значительно превышает энергию ионизации, то образующийся молекулярный ион получает избыточную энергию, которой может оказаться достаточно для разрыва в нем связей. Происходит распад молекулярного иона на частицы меньшей массы (фрагменты). Такой процесс называется фрагментацией . В практике масс-спектрометрии используются электроны с энергией 30÷100 эВ, что обеспечивает фрагментацию молекулярного иона.

Молекулярные ионы - это такие ионы, массы которых равны массе ионизируемой молекулы. К сожалению, нет прямых методов определения структуры ионов. Поэтому часто используют предположение о тождественности структуры молекулярного иона (М +) и нейтральной молекулы (М). Вероятность образования молекулярного иона больше для простых, малых молекул. С увеличением числа атомов в молекуле увеличивается вероятность фрагментации молекулярного иона.

Известны два основных типа фрагментации молекулярного иона - диссоциация и перегруппировка.

Диссоциация - распад молекулярного иона с сохранением последовательности связей. В результате процесса образуются катион и радикал:

Диссоциация углеводородов приводит к фрагментам с нечетными значениями отношения m/z.

Перегруппировка сопровождается изменением последовательности связей, в результате чего образуется новый катион-радикал меньшей массы и нейтральная устойчивая молекула (Н 2 О, СО, СО 2 и т.д.):

Перегруппировка углеводородов и кислородсодержащих соединений приводит к фрагменту с четным значением отношения m/z. Измерение массы образующихся осколков и их относительного количества позволяет получить ценную информацию о строении органических соединений.

Рассмотрим устройство масс-спектрометра (рис. 1). Масс-спектрометр должен содержать узлы для выполнения следующих функций: 1) ионизации пробы, 2) ускорение ионов электрическим полем, 3) распределение ионов согласно отношению m/z, 4) детектирование ионов по соответствующему электрическому сигналу.

Рис.1. Устройство масс-спектрометра

1 - источник электронов; 2 - ионизационная камера; 3 - ускорительные пластины (отрицательный потенциал); 4 - магнит; 5 - щель;

6 - коллектор ионов (детектор ионов)

Для получения масс-спектра пары вещества небольшими количествами с помощью специальной системы напуска вводятся в ионизационную камеру (2) , где поддерживается глубокий вакуум (давление 10 -6 мм рт. ст.). Молекулы вещества бомбардируются потоком электронов, излучаемых раскаленным катодом (1). Образующиеся ионы выталкиваются из ионизационной камеры небольшой разностью потенциалов (3). Получаемый поток ионов ускоряется, фокусируется сильным электрическим полем и попадает в магнитное поле (4).

В результате бомбардировки молекул вещества электронами образуются частицы, имеющие положительный или отрицательный заряд, а также нейтральные частицы. При прохождении потока частиц через магнитное поле нейтральные частицы не изменяют направления, а положительные и отрицательные отклоняются в разные стороны. Величины отклонения ионов пропорциональны заряду и обратно пропорциональны их массе.

Каждый отдельный ион, характеризуемый конкретной величиной m/z, при данной напряженности магнитного поля движется по собственной траектории. Интервал сканирования масс можно изменять, варьируя либо напряженностью магнитного поля, либо потенциалом электрического поля.

В обычной масс-спектрометрии принято регистрировать только частицы, имеющие положительный заряд, т.к. при бомбардировке молекул электронами положительно заряженных ионов обычно больше, чем отрицательно заряженных. Если необходимо изучать и отрицательно заряженные ионы, следует изменить знак потенциала ускорения (ускорительные пластины).

Если на выходе ионов из магнитного поля установить регистрирующее устройство, то частицы, различающиеся значениями m/z, будут давать раздельные сигналы. Интенсивность сигналов будет пропорциональна количеству частиц с данным значением m/z. Интенсивность сигналов определяется как их высота, выраженная в мм. Высота пика с максимальной интенсивностью принимается за 100 % (базовый пик), интенсивность остальных пиков пересчитывается пропорционально и выражается в процентах.

С ростом отношения m/z разница в отклонении магнитным полем частиц, различающихся на одну атомную единицу массы, уменьшается. В связи с этим важной характеристикой масс-спектрометров является их разрешающая способность (R) , определяющая максимальную массу ионов, различающихся на одну атомную единицу массы (для которой прибор разделяет пики не менее чем на 90%):

где М - максимальная масса, для которой перекрывание пиков менее 10%; ΔМ - одна атомная единица массы.

Стандартные приборы имеют R ≈ 5000/1, а для приборов с двойной фокусировкой потока ионов R ≈ 10000/1 и даже больше. Такие приборы способны уловить разницу в молекулярной массе ионов до 0,0001. Масс-спектрометр с двойной фокусировкой может легко разделить пики ионов с одинаковыми номинальными величинами молекулярных масс, но разным элементным составом. Например, может различить N 2 (28,0061), CO (27,9949), и C 2 H 4 (28,0313).

Установление эмпирической формулы по данным масс-спектров задача не простая, но ее можно решить, используя подходящий алгоритм. Для получения масс-спектра требуется ничтожно малое количество вещества - около 1 мкг.

2. Химическая ионизация (ХИ).

В этом методе образец до облучения пучком электронов разбавляют большим избытком «газа-реагента». Вероятность первичных ионизирующих столкновений между электронами и молекулами образца после этого настолько мала, что первичные ионы образуются почти исключительно из молекул реагента. В качестве реагентов обычно используют газы с низкой молекулярной массой, например, CH 4 , изо-C 4 H 10 , NH 3 и инертные газы (Ar, He). Вторичные ионы образуются в результате переноса атома водорода или электрона.

Если газом-реагентом служит метан, то реакции протекают в такой последовательности:

CH 4 + ē → CH 4 + + 2ē

CH 4 + + ē → CH 3 + + H + + 2ē

CH 4 + + CH 4 → CH 5 + + CH 3

CH 3 + + CH 4 → C 2 H 5 + + H 2

R-CH 3 + CH 5 + → R-CH 4 + + CH 4

где R-CH 3 - молекула исследуемого вещества.

Исследования показали, что частицы CH 5 + и C 2 H 5 + в сумме составляют около 90% ионов, присутствующих в этой системе. Масс-спектры, получаемые после химической ионизации, намного проще, содержат меньше пиков, и поэтому их часто легче интерпретировать.

В основе магнитного резонанса лежит резонансное (избирательное) поглощение радиочастотного излучения атомными частицами, помещенными в постоянное магнитное поле. Большинство элементарных частиц, подобно волчкам, вращаются вокруг собственной оси. Если частица обладает электрическим зарядом, то при ее вращении возникает магнитное поле, т.е. она ведет себя подобно крошечному магниту. При взаимодействии этого магнитика с внешним магнитным полем происходят явления, позволяющие получить информацию о ядрах, атомах или молекулах, в состав которых входит данная элементарная частица. Метод магнитного резонанса представляет собой универсальный инструмент исследований, применяемый в столь различных областях науки, как биология, химия, геология и физика. Различают магнитные резонансы двух основных видов: электронный парамагнитный резонанс и ядерный магнитный резонанс.

Электронный парамагнитный резонанс (ЭПР) был открыт Евгением Константиновичем Завойским в Казанском Университете в 1944 году. Он заметил, что монокристалл , помещенный в постоянное магнитное поле (4 мТл) поглощает микроволновое излучение определенной частоты (около 133 МГц).

Суть данного эффекта заключается в следующем. Электроны в веществах ведут себя как микроскопические магниты. Если поместить вещество в постоянное внешнее магнитное поле и воздействовать на него радиочастотным полем, то в разных веществах они будут переориентироваться по-разному и поглощение энергии будет избирательным. Возврат электронов к исходной ориентации сопровождается радиочастотным сигналом, который несет информацию о свойствах электронов и их окружении.

Расщепление Зеемана соответствует радиочастотному диапазону. Ширина линий спектра расщеплённого состояния определяется взаимодействием спинов электронов с их орбитальными моментами. Это определяет время релаксационных колебаний атомов как результат их взаимодействия с окружающими атомами. Поэтому ЭПР может служить средством исследования структуры внутреннего строения кристаллов и молекул, механизма кинетики химических реакций и других задач.

Рис. 5.5 Прецессия магнитного момента (М) парамагнетика в постоянном магнитном поле .

Рис. 5.5 иллюстрирует явление прецессии электрона в магнитном поле. Под действием вращательного момента, создаваемого полем , магнитный момент совершает круговые вращения по образующей конуса с ларморовской частотой . При наложении переменного магнитного поля, вектор напряженности совершает круговое движение с ларморовской частотой в плоскости, перпендикулярной вектору . При этом происходит изменение угла прецессии, приводящее к опрокидыванию магнитного момента (М). Увеличение угла прецессии сопровождается поглощением энергии электромагнитного поля, уменьшение угла - излучением с частотой .

Практически удобнее использовать момент наступления резкого поглощения энергии внешнего поля при постоянной частоте и изменяемой индукции магнитного поля. Чем сильнее взаимодействие между атомами, молекулами тем шире спектр ЭПР. Это позволяет судить о подвижности молекул, вязкости среды (>).

Рис. 5.6 Зависимость поглощающей способности энергии внешнего поля веществом от величины его вязкости.

, , (5.4)

Гиромагнитное отношение.

Например, при частота электромагнитного воздействия должна находиться в пределах .

Данный метод, представляющий собой один из видов спектроскопии, применяется при исследовании кристаллической структуры элементов, химии живых клеток, химических связей в веществах и т.д.

На рис. 5.6 представлена структурная схема ЭПР-спектрометра. Принцип его работы основан на измерении степени резонансного поглощения веществом проходящего через него электромагнитного излучения при изменяющейся напряженности внешнего магнитного поля.

Рис. 5.7 Схема спектрометра ЭПР (а) и распределение силовых линий магнитного и электрического полей в резонаторе. 1 – генератор микроволнового излучения, 2 – волновод, 3- резонатор, 4 – магнит, 5 – детектор микроволнового излучения, 6 – усилитель сигнала ЭПР, 7 – регистрирующие устройства (ЭВМ или осциллограф).

Открытие ЭПР послужило основой для разработки ряда других методов изучения строения веществ, таких как акустический парамагнитный резонанс, ферро- и антиферромагнитный резонанс, ядерный магнитный резонанс. При явлении акустического парамагнитного резонанса переходы между подуровнями инициируются наложением высокочастотных звуковых колебаний; в результате возникает резонансное поглощение звука.

Применение метода ЭПР дало ценные данные о строении стекол, кристаллов, растворов; в химии этот метод позволил установить строение большого числа соединений, изучить цепные реакции и выяснить роль свободных радикалов (молекул, обладающих свободной валентностью) в появлении и протекании химических реакций. Тщательное изучение радикалов привело к решению ряда вопросов молекулярной и клеточной биологии.

Метод ЭПР – очень мощный исследовательский инструмент, он практически незаменим при изучении изменений в структурах, в том числе и в биологических. Чувствительность метода ЭПР очень высока и составляет парамагнитных молекул. На применении ЭПР основан поиск новых веществ для квантовых генераторов; явление ЭПР используется для генерации сверхмощных субмиллиметровых волн.